
AD.AOSI 947 GEORGIKA INST OF TECH ATLANTA SCHOOL OF INFORMATION A-ETC F/6 12/1
COMSTNATORIAL GRAPH ENBEDDINO.WC)
JAN 80 Rt A DENILLO, S C EISENSTAT. Rt J LIPTON tOAAS29-76-6-0336

UN L SI ZIT- CS-7/la A O-I(I 0. -EL NL

Um

I 1.25 LA 1.6
I-m

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- I963-A

......
fil

~~pal

I~ t:

t~st

S ORSI TTI
-AM.

moo..I.~,I

IGI-IS-79;at,
6~~~

CINATORIAL GRtP EIBEIjI~

January, 1980

Final Report: ARO Grant No. DAAG29-76G-0338

prov,

a-=E

Contents
I. PAGE

-Introduction 2

A. Space and Time Hierarchies for Classes of Control Structures

and Data Structures
1

R. J. Lipton, S.C. Elsenstat, and R.A. DeMillo4

B. Space-Time Tradeoffs in Structured Programmiing: An

Improved Combinatorial Embedding Theorem 2

R.A. DeMillo, S.C. Eisenstat, and R.J. Lipton17

C. An Embedding Result for Labelled Programs
3

R.A. DeMillo, S.R. Kosaraju. 28

D. Preserving Average Proximity in Arrays
4

*R.A. DeMillo, S.C. Eisenstat, and R.J. Lipton 41

-E. The Average Length of Paths Embedded in Trees
R.A. DeMillo, R.J. Lipton.45

F. On Small Universal Data Structures and Related

Combinatorial Problems 5

R.A. DeMillo, S.C. Eisenstat, and R.J. Lipton.....5

G. A Separator Theorem for Planar Graphs
-R.J. Lipton and R.E. Tarjan.... r . . . 61

H. Applications of a Planar Separator Theorem7 .,11 t ' C?
*R.J. Lipton and R.E. Tarjan... 74

'JACM, 23(4)(October, 1976) pp. 720-732/

* ~ ~ 2JACM, 21(l)(Jan,1980) * ", >

3 Submitted for Publication

4 CACM , 21(3)(March,1978) pp. 228-231

5Proceedings 1978 Johns Hopkins Conference on Information Systems and Sciences,

Baltimore, Md., March 1978, pp. 421-428

SIMJ. Appl. Math, 36(2)(April,1979) pp. 177-189

797FOCS Conference, Providence, R.I., November 1977, pp. 162-170

2
jINTRODUCTION

Let G, G' be directed graphs. A combinatorial embedding of G into G'

is an identification of each x c V(G) with a set of vertices S c V(G')

I. such that each S is bounded in size by a constant independent of IV(G)I

and each arc in G is carried into a directed path of length bounded by a

constant independent of IV(G)I. This concept (first defined in [A]) has

formed the basis for a number of theoretical studies supported by ARO

Contract No. DAAG29-76-G-0338, and the papers collected here are representative

of - with one major exception - the state-of-the-art with regard to graph

embeddings.

First, a word regarding the subject matter of these papers. By

*modelling the control structures of programs as classes of directed graphs,

asymptotic properties of control structure transformations can be obtained.

This is the principle aim of [A,B,C]. Knuth [1] surveys a number of results

concerning control structure transformations and places the graph embedding

results in context. Directed graphs also model data storage structures

(vertices model nodes or records, arcs model logical adjacencies). The notion

of graph embedding can be used to compare the relative storage efficiencies

of classes of data structures [D,E,F]. Several researchers have attempted to

generalize these results to more encompassing notions of data storage and

representation (see e.g., [2,7]) and more sophisticated types of analysis [3].

The purely combinatorial notions involved in data structure embeddings also

make contact with a variety of other theoretical and numerical problems [4].

In fact, one of the principle devices used in the results of [A-F] is the

notion of "cutting" graphs along boundaries of connected regions. A boundary
which cuts a graph is called a separator and in [G,H] a characterization of

separator graphs is derived and used to obtain results in areas from Turing

* Machine complexity to optimization theory.

i3

Graph Embeddings, boundary arguments and graph theoretical models of

A computation all appear to be related in sometimes surprising ways [5,6,7,8].

Missing from the collection is a coherent account of these connections. It

will have to suffice that the connections run deeper than the surface. We

anticipate reporting on this aspect of graph embedding elsewhere.

References

1. D.E. Knuth
"Structured Programming with goto Statements" in R.Yeh, editor,
Current Trends in Programming Methodology, Volume I, Software
Specification and Design, Prentice-Hall, 1977, pp .140-194.

2. A.L. Rosenberg

"Data Encodings and Their Costs", Acta Informatica, Vol. 9, 1978,J pp. 273-292.

3. A.L. Chow
"Preserving Average Proximity in Arrays with Duplication", M.S. Thesis,
University of Illinois, Urbana, Report No. R-812, Coordinated Science
Laboratory.

4. M.R. Gatey, R.L. Graham, D.S. Johnson, and D.E. Knuth
S"Complexity Results for Bandwidth Minimization", J. Combinatorial Theory,
(to appear).

5. L.G. Valiant
"Negation can be Exponentially Powerful", Proceedings llth ACM Symposium
on Theory of Computing, 1979, pp. 189-196.

6. G.S. Tseitin
"On the Complexity of Derivations in the Propositional Calculus" in
A.O. Slisenko, editor, Structures in Constructive Mathematics and
Mathematical Logic, 1968, pp. 115-125.

7. A. George
"Nested Dissection of a Regular Finite Element Mesh", SIAM J. Numerical
Anal., Vol. 10, No. 2, April 1973, pp. 345-363.

8. S. Cook
"Observation of a Storage-Time Tradeoff", Proc. 5th ACM Symposium on
Theory of Computing, 1973, pp. 29-33.

* .I

T" "~ ,~ 4

and Data Structures

R. J. LIPTON AND S. C. EISENSTAT

Vae Uiversity, News Haven. Connecticut

AND

R. A. DEMILLO

Univeruity of Wis'onsin. Milwaukee, Wisconsin

ASTRACT. Control structures and data structures are modeled by directed graphs. In the control case nodes
represent executable statements and arcs represent possible flow of control : in the data case nodes represent
memory locations and arcs represent logical adjacencies in the data structure. Classes of graphs are compared
by a relation S,. where G s.r H if G can be embedded in H with at most a T-fold increase in distance between

- . embedded nodes by making at most S "'copies" of any node in G. For both control structures and data
structures. S and T are interpreted as space and time constants, respectively. Results are presented that
establish hierarchies with respect so S.T for (1) data structures. (2) sequential program schemata normal
forms, and (3) sequential control structures.

ART woaDs AND PruASEs; ancestor tree, bounded simulation, complexity, control structure, data structure.
directed graph. do forever program, embedding. go to prot 'in. label euit program. normal form programs.
structured programming. *We programs

* CA CATEGORIES: 4.22. 4.34. 5.24. 5.25. 5.32

I . Int'roduction
* The running time or computational complexity of a sequential process is usually esti-

mated by summing weights attached to the basic operations from which the process is
derived. In practice, however, the complexity of a program is often limited by ho%%
efficiently it can access its data structures and control program flow. Furthermore. it has
been extensively argued 141 that certain limitations on the process sequencing mecha-
nisms available to the programmer result in more -efficient" representations for the
underlying processes. In this paper we examine these issues in an attempt to assess the
"power" of various data and control structures.

A key observation about sequential processes is that they usually do not reference

Copyright (r 1,I76. Association for Computing Machinery. Inc. General permission to republish. but not for
profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is
made to the publication, to its date of issue, and to the fact that reprinting privileges were granted h%
permission of the Association for Computing Machinery.
Some of these results were presented at the 7th ACM Symposium tin the Theory if Computing. Albutluerlue.
New Mexico. May 1975.
The research was supported in part by the US Army Research Office under Grants DAHC04.74-G-01 79 and
DAHCO4-75.G-0037 and by the Office of N~tvaI Research under Grant N00014-67.0097-0016 Some of
this work was carried out while DeMillo and Lipton %%ere visiiI, at the Communicatios/ADI Lahorator% of
the US Army Electronics Command. Fort Monmouth. New Jersey.
Authors' addresses; RJ. tLipion and S.C' Fisenstal. D~epartment of Computer %ciencv. Yal- Unisersit%. III
Hillhouse Avv.. New Haven. CT' 06520; R.A. DcMillo. School of Information and Compsuter Science.

Georgia Institute of Technology, Atlanta. GA 10332

Inwft .9 Iia A-..M N,, wimptitaq M.h..s0 V5. 21 M,. A 1~,4-76~, Pt. '.11 ?1

5

Space and Time Hierarchies NO0

their data randomly. For instance, algorithms that organize their data structures as arra s
often access the array elements in a "local" manner (e.g. the conventional matrix
multiplication algorithm accesses its arrays by rows and by columns). Thus in a paging
environment how one stores an array is especially important (cf. Moler It 3J, Rosenberg
1161). and it is natural to investigate ho arrays can he stored so that elements "near"
one another in the array are stored near one another in memory. Data structures are
compared by the relation -,.r: For data structures G and G*. G 5,..r G" if G can be
embedded in G .) that there is at most a T-fold increase in distance between embedded
objects.

It is somewhat unexpected that an analogous study for control structures uses the same
basic insights. It is well known that process sequencing disciplines found in programming
practice (e.g. go to, while) can simulate each other and are thus equivalent in the sense of
yielding functionally equivalent programs, but are inequivalent relative to the stronger
requirement of structural isomorphism 11-3, 10. 11]. We argue that the fundamental
issue is neither the construction of functionally equivalent programs nor the inability to
preserve structure exactly, but rather the "naturalness" of the simulation. Control
structures are compared by the relation <ST: For algorithms G and G ° with distinct
process sequencing mechanisms, G -..r G if G* simulates G by making at most S copies
of each operation in G and increasing the cost of sequential access of embedded
operations by a factor of at most T.

Thus comparing the power of data structures and control structures involves analyzing
the one-one and many-one aspects of embedding (or simulation) techniques whose
efficiency is bounded by S and T. In a natural way. the relation -s.r represents an
intertwining of space and time complexities.

In Section 2 basic combinatorial definitions are presented, and the combinatorial
models used for representing data structures and control structures are introduced. In
Section 3 the relation -s.T is defined by means of graph embeddings. This relation is
viewed as an embedding in the data structure case and as a simulation relation in the
control structure case. Section 4 contains the main result for data structure embeddings:
For certain families of structures JG,}1 0 and JG,*Ji,.. if G, S-,.T G,*, then T -! c- log n, (see
footnote I) for some positive constant c whose choice is independent of n,, the number of
components of G,.

The main theorem in Section 5 generalizes the result in Section 4 by allowing S :- 1. In
this case, if G, <-.,r G? for certain natural choices of (G,}.O and {G;},, 0. then T + log S -
c-log n,, where n, is the number of components of G, and c is a positive constant
independent of n,. A direct result of this theorem is that certain schema constructions.
such as Engeler normal form [61, cannot be achieved "uniformly" with respect to the
5.r relation. More exactly, for any constants S and T there is a go to program G such
that for no program H in Engeler normal form is G 5s.r H. Thus, the construction of
Engeler normal forms - while always possible - does not preserve time and space in a
bounded way. This result also demonstrates how our results will be asymptotic in their
nature: For any go to program G there are S and T such that G !-s.l H where H is the
Engeler normal form; however, the values of S and T must grow with the size of the
program G.

In Section 6 the relation -<s.r is placed in the context of relations used in previous
studies of control structure simulation. The main simulation results for control structures
are then developed, giving rise to the hierarchy of control structures shown in Figure I.

I An important result is that go to programs are strictly more powcrful than label exilprograms. Since the class of label exit programs includes many of the standard constructs
that are allowed in "'structured" programs. this result can he viewed as a pr.cise sense in

When we coLahlish rcults of this form. , arc avwrting that there is a minimal rate(if itrowth for T as a
function ifn, In the WequI %%c will ccnsislcntly ahus " our nolation h wnlingfl$, TI Z! inI instead of the less
cnvenient fisin). Tin i -girni It %ill usualls hi. clar frtim context %,hcn N. T are to h. c'unsdcrLd o'nstant,

and when .S and I arc paramct.ricd

M-1111 -

PA

CH.. DO T

+I
3. J. UPTON, S. C. EISENSTAT, AND R. A. DEMILLO

computed goto or case

J goto with d way branching (d_2)

label exits

do forever

while
FG. I

which there is a time-space speedup between go to programs and "structured" programs:
There are go to programs whose only "structured" counterparts explode in either time or
space. This result seems to make precise the comments of Knuth 19] on the efficiency of
go to and "structured" programs.

While the results in this paper are motivated by our interest in the power of data and
control structures, they may have interest purely as combinatorial results.

2. The Combinatorial Representations

A directed graph G is an ordered pair (V, E) of nodes and arcs. If there is an arc from x to
y and an arc from y tox, then we say there is an edge between z andy. Moreover, the arcs
shown in Figure 2(a) are represented as in Figure 2(b). A path from x to y is defined by
any sequence of arcs from x = x, to x, to .r2 , . , x,, to x. = y. We define a metric
do(X, y) on G as the number of arcs in a minimal length path from x and y.

A binary tree2 is a finite set of nodes that either is a single node or consists of a root x
* and an edge between x and the root of each of two binary trees called the left and right

subtrees of the root (cf. Knuth 18]). Note that nodes in a binary tree are connected by
edges so that the metric is symmetric. If G is a binary tree, then a node x of G is a leaf of
G if x has no sons.

We represent both control structures and data structures by directed graphs. In the
control case, the nodes of a graph G represent executable statements and the arcs
represent possible flow of control; in the data case, the nodes of the graph represent
memory locations and the arcs represent logical adjacencies in the data structure. Thus in
either case what is to be modeled is the "difficulty" of accessing nodes: The complexity
of a control structure" is given by the cost of accessing and sequencing noncontrol
instructions, while the complexity of a data structure is determined by the cost of
accessing successive data elements. Each class of control structure or data structure can
be studied in terms of restrictions on what graphs are allowed in that class.

2.1. DATA STRUCTURES. The two classes of data structure we deal with are arrays
and ancestor trees.

Arrays. • G. denotes the data structure corresponding to an n x n array. If the nodes
of G. are indexed by (i, j) where 1 s i s n and 1 sj s n, then there is an edge between
(i,j) and (i,j + 1), for I s i - n, I sj < n, and between (i,j) and (i + 1,j), for I S i < n,
1 !sj S n. Thus G. is "rook connected." For instance, G3 is illustrated in Figure 3.

Ancestor trees. Ancestor trees are binary trees with an additional feature: A node x
of an ancestor tree may be connected by an arc to any of its ancestors. For example, the
graph shown in Figure 4 is an ancestor tree because y is both an ancestor and a successor

tsI isa root with subtree H andy isa root of one ol the suhtrees ofx. then y isason oft; further.t isanan.

cestor of each node in H. while each node in H is a .tuccess, of x.
Some care must K. ccrci.cd in viewing control siructures that are represnted in this way; our reprc cnta-

tion% do not always correspond to (tcmlpiral) flow of control and arc not to by I."iked at a, flotwcharts Rather.
what is king modlelkd is th potentia contrl connectivity of an undcrlying algorithm or process.

I.

Space and Time Hierarchies

.. (__ b)

(a)
i FIG. 2

(1,1) (1,2) (1,3)

(2,1) ... (2,2) ---- (2,3)
I I'

(3,1) -- (3,2) (3,3)

FiG. 3

y

/%

0 0 0
LX L2

FIG. 4 FiG. 5

of x. Notice, however, that unlike metrics on binary trees, the graph metric dG is not
necessarily symmetric on ancestor trees. Ancestor trees include linear lists, circular
lists, and threaded lists 1141 as special cases.

2.2. CONTROL STRUCTURES. We consider the following five classes of control struc-
tures: computed go to; go to with d-way branching; label exit; do forever; while. In
addition, all of the available classes have access to a sequential flow of control and an
alternative (e.g. if-then-else) flow of control. Since the constructions described below do
not involve schema manipulation, the details of these features need not be made explicit.
Indeed. there are a number of ways to represent these features in our model, and our
later results arc invariant under the differing representations. We now present the class
of graphs that represent programs formed from each of the five control structures.

Computed go to programs. go to, programs are programs that allow arbitrary
branching between statements. For instance, we allow for representations of the con-
struct go to i (L, L.), which branches to the ith label depending on the value of i.
Thus this class of programs is represented by the entire class of directed graphs. The
construct above is represented by the graph of Figure 5, a node with n arcs leading to
nodes labeled by L1. L.

go to programs with d-wav branching. go 10d programs are programs in which the
amount of branching that is possible in one step is bounded by the integer d. For
example. the Fortran construct IF (E) L, L2, L3 falls in the class go to. Programs with d-
way branching are represented by the class of directed graphs with a maximum out-
degree d.4

Label exit, do forever, and while programs. Label exit, do forever, and while
programs are defined as certain classes of ancestor trees. In order to define these classes.
we need the following relations, which are defined for any ancestor tree:

x --, y if y is the left son of x.

x - y if y is the right son of x.

,x v if y has an ancestor pointer from x.

Th ouil-degre of a mnwid z P% I' : d,;tI, vI = v) .

, 8

a. iO 2 .

3. J. LIMTON, S. C. EISENSTAT, AND I. A. DEMILLO

We view x Y as meaning that statement x can "push" into a substructure with first
statement y; x r y as meaning that statement x is "sequentially" followed b) y; and x -e
y as meaning that statement x can "exit" some structure and return to statement y.

A program is a while program provided it is an ancestor tree that satisfies: y . x
implies 3 Y, Y such thatx - Y, yy To' * ' V Y, = y. where y is a leaf and no y1 for
i < k has an ancestor pointer (see Figure 6(a)). The last restriction reflects the fact that
only the last statement in a while loop is allowed to exit the loop.

A program is a do forever program provided it is an ancestor tree that satisfies: y -e x
implies 3 y...... y, = y such that x 7P Yi , - y. -* *' * To Yb, where each y, can have
ancestor pointers only to x (see Figure 6(b)). The key distinction between while
programs and do forever programs is that in a do forever program all statements in a loop
can potentially exit immediately out of the looping structure. Clearly, do forever
programs correspond to the fA. (n - 1) structures of Bahm and Jacopini 121.

Finally, a label exit program is any program that is also an ancestor tree. Essentially
label exit programs allow any jumping out of substructures as long as the return is always
to an ancestor. The class of label exit programs is therefore quite extensive and includes
many types of so-called "structured" programs (cf. Peterson et al. 1,151). For example, all
label exit programs are reducible in the sense of 171; moreover, they correspond to
programs in Engeler normal form 16).

Example. The following program contains label exit, do forever, and while control
structures; its representation using the conventions outlined above is shown in Figure 7.
L: S,;

* wle B, do
boomnS,;

do forever
begin Ss; exis L:

do forever begin S.; exit: S3 end;
So

S7ed;
*ad;

3. S. T Bounded Embeddings

! The following definition is fundamental to what follows. Let G =(V, E) and G"

(V*, E*) be directed graphs with associated metrics d and d,.. We say that G* can simu-
late G (or G can be embedded into G °) with space constant S and time constant T, writ-
ten G s.r Go, if there is a mapping (called an embedding) 0 : V" -. V U {A) of the nodes

iX
1P xx

' ' It i e| b)

Fwo. 6

L --

"~9

Space and Time Hierarchies

S3 5

4i

exit L

S4

Fit. 7

of G* to the nodes of G and a special node A, so that:

I) Yv* E V* with 4,*) vk A.
Vw E V such that dG(4)(v*) w) < x,J3 w* E V* such that 4w*) = w and dG(v ° , w*) 5 TdG(4(v), w);

(2) Vt E V. 0 < I 4)-iv I I 1 E V* : 4)(v*) = v} I - S.
If 4D is an embedding and 4)(v) = A, then we refer to v" as a bookkeeping node. If 40(v)
= v * A, then v* is said to be acopy of v. If S = 1, we often write -sr instead of -. r.

Condition (I) states that when G and G' are control structures (or data structures)
simulation involves at most a T-fold increase in the cost of statement sequencing (or
data element accessing). i.e. the embedding induces at most a T-fold increase in path
length. Condition (2) states that there are at most S copies of any v E V in G*. Note that
although G -s.r G* may hold between data structures G and G* when S > 1. it is
unlikely that such a simulation would be of value (e.g. if an array is being stored as a list
structure with multiple copies of array elements, then selective updating of the array may
involve multiple updating of list nodes). For control structures, however, simulations
with S > I are frequently used and are quite natural; this is sometimes called node
splitting.

Example. Consider the flow diagrams shown in Figure 8. Figure 8(b) is the result of
FI .applying a standard 'restructuring" algorithm I I I to Figure 8(a) to remove the multiple

exit loop x 3. x 4, x5. Viewing both diagrams as directed graphs, the graph in Figure 8(b) is
a 2,2 simulation of Figure 8(a) by defining 0 as follows:

4t(x,*) = x1. 4)(x) = x5,
0(4) = x2. 4() = .
4)(x4) = 4)(x) (x to) = A. 44x2) = 4(x7t ,1. 4)l= 4tx;) = x3 , 42(x .l =)(t = ,= (x ,) x., *(x;,, xX,.

4. Data Strutiure Ernbeddings

In this section we present our main result for data structure%. settling negattcl. the
question whether arrays can be stored as arbitrary lists with linear hounds on proximity
and determining a nontrivial lower bound on the grot.h te of T a% a function of n for
an n xn array. This result generalizes a result of Rosenberg I16,1 shoiing that arra)s

f

S1-0

r " ",, .+ : DU NOT

R. J. LIPTON. S. C. EISENSTAT. AND R. A. DiEMILLO

TRUE FALSE
K

3

TRUE FALSE
S -*

* an S , Ce se K- HALT os ofpoi.

FALSLSRU

FHALT KS P(-) Kg FALSE r

TRU.ETU

HALT]X HALT XK, HALT K 4s
(a) b

FiG. 8

kannot be stored in linear memory with only bounded loss of proximity. But since the
arguments are fundamentally diffe'ent, it is interesting to compare the two proof'.
Recall that Rosenberg's arguments are essentially "volumetric": The number of ne;eh-
bors within distance n of a node in an array can be quadratic in n, while a node in a linear
list can have at most 2n such neighbors. A volumetric argument then demonstrates that
arrays cannot be stored in a system with such linear neighborhood structure with only
bounded loss of proximity. In contrast, such methods do not seem to apply to our
problems; e.g. a node in a binary tree can have more than 2" neighbors within distance n.

To obtain our result we need a series of lemmas. Let G = (V, E) be a directed graph
with associated metric d0 and suppose A C V. We define the boundary of A as follows:

((A) = C- A .- 3 x L A such that dG(x.y) = I).

In other words. 8(A) is the set of nodes in A reachable from some node not in A by an arc 4
of G.

LEMMA4.1. Let G. = (V.. E) be an nxn array and suppose that A C V. is such that
I A I S Jn

2. Then I A 1 21 aA) 12.

PROOF. We assume I A j > 0. since otherwise the lemma is trivially true, and let A,.
.. bA he the columns of A; that is. if {(1,). (2. i). in. i) is the ith column of G.,
then A, is that subset of the column that is included in A. Let k be the number of columns
A, such that I A, I < n. and let I < k be the number of columns A, with 0 < I A, I < n.
Since I A I S 4n2. it follows that (n -)n !5 n2 and hence

, k n. ()

Notice that if) < I A, < n. then at least one node in A, is adjacent to a node not in A
and thus contributes at least one node to o(A); therefore

Ia(A)I -I (2)

Suppose thatJ A, I = 0 for some o, !5 io !5 n. We then claim

Lie,

Space and Time Hierarchies

1c)(A)i a max iAj . (3j

To show this, let A, be maximal in size and assume i4 < j. the casej < io being handled
symmetrically. Select an, row r of G, such that (r, j) E Aj. Now. (r, i) E A by
assumption. but sonle one or more of (r, i. + 1) (r, j) is in A. Therefore each row r
of G. for which (r,j) E Aj contributes at least one node to 8(A), which establishes (3).

To complete the proof of the lemma we consider two cases.
1. No A, is empty. In this case. I = k, and by combining (1) and (2),

2 1 8(A) 1'- 212 = 2k-2 L- n'- A

II. Some A, is empty. Let c . Cm,, denote the cardinalities of the nonempty columns
A. If some c, = n, then the result follows directly from (3). If not, then m = 1 and c +
. . . + c. = I A Iso that max, I A4 I a: I A 1/1. By (2) and (3) it follows that 2 I S(A) I
+ I A I/I. The lemma is now immediate by calculation. 0

LEMMA 4.2. Let G, = (V., E) and suppose x, y E V.; then dG.(x, y) :- 2n.
PROOF. This is an elementary property of arrays. 0
Lemmas 4.1 and 4.2 and the fact that I V. I = n2 summarize the basic properties of

arrays that will be used in the proof of our main result.
LEMMA 4.3. Let H =(V, E) be an ancestor tree and let H =(VO. E.) be a subtree of H.

If x E Vo and y C V - V ,, then du(y. x) is greater than or equal to the depth of x in Ho.
PROOF. Since y i V0, any path from y to x must pass through the root of H.. 0
LEMMA 4.4. Let H* = (V', E*) be an ancestor tree. let Ho = I Vo, Eo) be a subtree of

H'; and let A = 4)(V) - {A). If G. sr H° and I A 1 <n2, then T :- J(Iogj A I - 1); in
other words, I A 1 - 2' r1.

PROOF. Assume that I (A) I ->
2T

. Since the root of Hohas at most 2" descendants of
depth less than T + 1. there is a -'-de .* E V.* of depth greater than or equal to T + I in
H0* such that 4(bx*) E (A). Sinc,: 0cx*) E 8(A), there is a y E V. - A with dc.y, @(x*))
!5 1. Now there exists a y* such that)(v*) = y and dr. (y. x*) - T, by the definition of
sr. Since y f A it follows that y° C V,*. But by Lemma 4.3, dH.(y ° , x') - T + 1, which
is a contradiction. Therefore. I 8(A) I - 2r and by Lemma 4.1 I A I I (A) 12
22" . Q

THEOREM 4.5. Let H' = (V° , E*) be an ancestor tree. If G. -rH*, then T - Jlog n - J.
PROOF. Assume G, Sr H* and for any subtree H, = (Vt, E*) of H ° letA, = OD(Vi) -

{A). Let H,* and H2 be subtrees of some node in H*. Either I A, 15 in2 or I A 2 I S n,
since 4) is I-I. Using this fact, we may assume that H* is of the form shown in Figure 9,
where I A, I !s in2 for I S i 5 k. (We have suppressed explicit representation of ancestral
links.) Without loss of generality we assume always that the "'smaller" subtree is on the
right. By Lemma 4.4, 1A1 I - 21"42 for all i.

Let i be the smallest integer such that I A I * 0. and let j be the largest such integer.
Then , IAt <- (A - i + 1)2"1 . Since V. =h

Hh' H

I

..... T,"iD A

R. 1. LIFrON, S. C. EISENSTAT, AND R. A. DEMILLO

(- i+ or- -- n 2.)

Now letx* E V7* andy* E Vt. Then by Lemma 4.3,dH.(y, X)>j - i.
On the other hand, by Lemma 4.2. dG.(4,Y*), O(x)) s 2n; hence, since G. !S H*,

df(y*,x*) S 2nT. Thus

j-i 2nT. (2)

Combining (I) and (2). we have 2nT + I ns/22r +,. It follows that T z 4 logn - 1. 0

5. Main Theorem

Observe that the S = I hypothesis was used at several key points in the proof of Theorem
4,5. Since this restriction is unrealistic in dealing with control structures, we now remove
it by generalizing the previous result.

THEOREM 5.1. Let H* = (V*, E)be an ancestor tree and let G. <s.rH* where G.is an
n x n array. Then T + logS log n - log 8,/2.

PRooF. Let 0P be the embedding function, and define a new function 4' mapping
subsets of V* to subsets of V by I(A *) = 4)(A) - {A}. In other words, 4I'(A) contains
those nodes of V for which copies exist in A *.

As in Theorem 4.5. we decompose H* as follows. Let x,* be the root of H* and write
H* as in Figure 10(a). where we may assume I *'(L*) I -sI 'P(R,*) I without loss of
generality. Clearly, this process can be repeated, letting xi+, denote the root of Rj* and
expanding Rj* at each stage of the construction. Thus, H* can be written as in Figure
10(b). where I %'(L) I 7!1 1 '(R?) I for 1 5 i :s k. Notice that we have ignored all
ancestral links in this construction. Indeed, we assume that all such links exist but
suppress explicit reference to them.

Let H* = (Vt. Ef) denote the subtree of Figure 10(c). We say that H,* is small if
I *(V,) I S In2; otherwise H* is large. (The notion of smallness is motivated by the key
to the argument in Theorem 4.5.) Let

D, = U '(Vi).

In other words, Dk is the set of nodes in V of which copies exist in some small Hj*.
LEMMA 5.2. For some p. in' < I D,I < .
PROOF. By convention. I D = 0. If D,-, < n- and I D, - in', then D. = D,-,

U '1'(V), where H,* is small. so that

I Dp I I D,-, I + I *(V,) I < 4n' + 4n' = 4n'.

Thus we need show only that I D, I z 4n2 for some p.
Since I *(L*) I ! I *(R,*) I and '(V*) = *(L,*) U tq,4) U ' (R*), it follows that n'

= I ',(V) I s I *'(L') I + 1 + I '(R) I !s 2 1'P(Rr) I + 1; hence I (Rl' I -> 4(ns - 1) Z
in'. We can obviously choose p so large that I *(R;) I - 0. We claim that the associated
D, is large.

Let i be the largest integer such that I *(R, *) a - in'. Since *I'(R,*) I Z J R
2, such an i

ii?
- , Mr 1

"' a) R Ib) (c)
*, PIG I0

13

Space and Time Hierarchies

must exist. Then I '(R*) I < n2 for i < j s p. and since *(V ,) = W(L*) U (x4), %c

have

I F'(V1' I -< I + I *'(L7) s 1 + I 4(R*)< 1 + jn2.

Thus Hja is small for i < j ! p. But this implies 41(R,*) C U,=, q(Via) C D,. By our

choice of i. however, we conclude that I D, '4(RO) I 2 2', establishing our

claim. 0
We now introduce a variant of the concept of boundary. If A is a set of nodes of G,.

then the coboundary of A is defined by

5(A) m{y 4 A: there existsx E A such that dG. x. y) = 1)

= 8(V. - A).

In other words, 5(A) is the set of nodes not in A reachable from some node in A in one
step. The proof of the following result is similar to that of Lemma 4.1 and is omitted.

LEMMA 5.3. Let A be a set of nodes of G, with I A I :s jn2. Then I A I <- 2 I(A) 12.

-Let k satisfy Lemma 5.2. By Lemma 5.3,1 .(Dk) I a: I Dk 112/1/2 - n/2,/2 . Now let/ =

(H;' : H,* is large) 1, the number of large subtrees. Since at most S copies of any node in

G. appear in H",

n 2/4 X- , I *(V*) [Sn'.
IVI

Hence I s 45.
in order to complete the proof we proceed as follows. We have already shown that

I(D,) I - n/2/2; we show next that this implies that there are too many paths into the
large trees Hj' from the small trees for S and T to be bounded.

Let

Qr = {v* 6 V : H,* is large and there exist Hj" small andx* E Vj* such that d,.(x*, v*) -

T1.

In other words, QT is the set of nodes in large subtrees Hj* that can be reached from some
node in some small subtree H,' in at most T steps. We define a one-to-one mapping g
from 3(Dk) into Qr as follows. Select some y E 5(Dk). Then y E Dk and, for some x E Dk,
dG.(x, y) s 1. Let x* be a copy ofx in some small H,*. Such a copy exists by the definition

of Dk. Since G.ns.r H*, there is a copy y* ofy such that d.(x*, y*) S T. Now y is not in

any small Hl since y E Dk. Thus we can define g(y) = y*, and g is indeed a mapping from
5(Dk) to Qr. In order to see that g is one-one, we note that for any y E (Dk), 4'g(y) =

40(.*) = y; hence g is one-one, so that I Qr I -I (D) I-

Thus we have, on the one hand, that I Qr I (Dk) I 2 n /2,/2 and, on the other hand,
that

I Qr I I (H,* : H,* is large) I v* : v" E large H,* within depth Tof the root of H) I

-<12r -T 4S.2 r .

Combining the upper and lower bounds on I QT 1. we deduce that T + log S -> log n - log
81/2.0

As an application of Theorem 5.1. we present the following result. Informally a
flowchart is said to be in Engeler normal form if it is represented by a tree augmented by
pointers from nodes to ancestors. or nodes at an earlier level but along the same branch.

More precisely, a go to program G has an S. T Engler normal form if G -ssr H for some
ancestor tree H.

COROLLARY 5.4. (1) If G. has an S, T Engeer normal form and T is fixed, then S a!
c n. (2) If G. has an S, T Engeler normal form and S is fixed, then T a c "log n.

Thus in the worst case. either time or space must he unhoundcd in the construction of
Engeler normal forms.

14

R. J. UPTON. S. C. EISENSTA1. AND R. A. DLSILLO

6. Control Structures

In this section Ac establish our main results for control structures, using the relation
(see Figure I). For classes X and Y of control structures, i.e. classes of graph representa-
tions of programs constructed using only control structures from the indicated restricted
class of control structures, we say that X is more powerful than Y" %hen there exist
constants S'. T' such that (i) for all H E Y there exist G E X such that H " .r. G. but for
no constants S, T is it true that (2) for all G E X there exists H E Y such that G -5S.T H.

Since for the hierarchy of Figure I if X is more powerful than Y. then the control
structures in Y are restrictions of the control structures in X, condition (I) is trivially
satisfied with S' = T' = 1. It is. of course, the results that establish condition (2) that
have the greatest novelty.

To place our results in historical perspective, we follow Ledgard 1121 in distinguishing
the following extremes in simulations among control structures:

(1) G is functionally simulated by H (written G 5f H) if, under identical interpreta-
tions. G and H compute the same function.

(2) G is very strongly simulated by H (written G s,., H) if G s,.1 H and if 4 is an
embedding inducing iS-.,, then the domain of 4 and the range of 0 are identical sets.

In (21 it is shown that for each go to program G there exists a while program H such
that G s H. while in (I 01 it is shown that for some go to program G there does not exist
a while program H such that G s., H. Several other notions of simulation intermediate
to -z. and :5,., have also been used to stud), the relative power of classes of control
structures 1. 3. iI. 15 -1.
The connection between our relation -s.r and these relations is:
(I) -5s.r is weaker than s,,, since we allow both space and time to increase and do not

require IP to have identical range and domain;
(2) -s.r is stronger than sf, since we require that paths be preserved in a weak sense;
(3) l-s.r deals only with combinatorial aspects of program structure, and thus we

make no assumptions about adding program variables or extra predicates (as were made
for example in 1I, 2, II1).

We thus claim that the hierarchy theorems presented in this section span the relations
used in previous studies. For the remainder of this section we adopt the notation Xf Y
to indicate that Y C X but the graphs in X are not uniformly simulated by the grapl.s in
Y. i.e. X is more powerful than Y.

We will make use of the following definitio;s:. For any directed graph G let

N' n l1, x) = 1(y : dG (y, xl :s Il N (0. x) =y : dG Ix. -l)j.

LEMMA 6.1. Suppose that G -s.r G and let x be a node in G. Then (I) for at coplofx. N' ,1, x) 5 NG I 7", x *); and (2)for some copy x * oft, N, (1, x N) S S T. it

The proofs of both (I) and (2) follow easily from the definition of -.j.r and are left to
the reader.

THEOREM 6.2. do forever t while.
PROOF. Let S. T be such that for all do forever programs G. there is a while program

H for which G -s r H. By part (2) of Lemma 6.1. for an%' node x in G there exist% a cop
x * ofx such that Nk, (I.x) s S.Nil, (T. x*). But since H is a while program. node,, in H
have at most one ancestor pointer to them, so that Nn (T. x*) s 2' Thus 1 I. tI -LV
for any do forever program G and any node x in G. This is a contradiction, sice the
number of ancestor pointers to nodes in do forever programs can be unbounded :

THEOREM 6.3. label exit % do forever.
PROOF. Let S. T he such that for any label exit program G there exists a do forever

program H such that G i. r H. Consider the label exit graph G' defined as follos

(1) V"' . A). (2) x, - xi., for all I s i < n. (3) x.-dx, for all 1 - i5 t .
* (See Figure II.) Then. by construction, NVM(1, z.) = n - I.

15

Spa"t ad Time Hierarchies

X C'.

X3

Sn

FiG II

Let H'41 be the corresponding do forever program. Then a node x in H has at most
two sons and one ancestor, so that NW(T, x*) :s 3r.Thus by part (I) of Lemma 6.1.
n - I = N6d1, x.) s N (T, x) s 3

r, where x * is any copy of x. in HW, a contradic-
tion. 0o

TNEOREM 6.4. For d - 2. go tod i label exit.
PaooF. Notice that arrays are included it go tof forf - 4. Thus, by Theorem S.l. we

have go to, f label exit (f -- 4). since label exit programs are ancestor trees. To complete
the proof it is sufficient to note that for any array G. there is some H in 9o to2 such that
G, s,.H. 0

THEOREM 6.5. oto, $ 0go tod for all d I.
PRooF. Let S. The such that for all go to,, programs G. there exists a go tOd program

H such that G -s..rH. By part (I)of Lemma 6.I, for all nodesx in G there isacopyx" of
x in H such that No, (T, x*) N, (1. x). But NoH, (T, x*) !5 dr.since the out-degree of
an% vertex in H is at most d. This is a contradiction, since in go to, N,u, 11. x) is
unbounded. 0

7. Conclusion
The methods for comparing data structures and control structures by the relation .r
appear to he quite general, and there are several straightforward extensions of the data
structure embedding results that recover relationships between other data structures.

In the case of control structures, the conclusions to be drawn are perhaps more widel.
varying and seem to give direction to further investigations. The observation in Corollary
5.4 that a standard schema construction is inherently inefficient leads us to question the
'tatus of other property preserving transformations. We also believe that Theorem 6.5
has implications for the often quoted -theoretical foundations of structured program-
ming". this is particularly apparent because the go to program that enters the proof is
itself a highly structured object. Indeed, a 15.. embedding into a label exit program fails,
not because G. is ill structured, but rather because of the densely hierarchical nature of
the control flow. We thus offer programs of the form G. as "structured" go to programs
whose structures cannot be maintained b less general control structures. The exact
relationship between ancestor trees and reducible flow graphs 171 is still unsettled, but
some work has been done to place the reducible flo% graphs in the hierarchy of Figure 1
151. More recent extensions of the results presented here give techniques for uncovering
total space and time simulation trade-offs, as opposed to the worst-casc analyses of this
paper 151. Finall.. the extension of these results to parallel and asynchronous control
structures appears to be possible and promises to yield important information about the
relative power of nonsequential mechanisms.

ACKNOWl iIKIMI NIS. The authors would like to thank W. WtIe. Ptcerson for his
comments on an earlier version of this paper and Arnold Rosenberg for a careful reading
of the paper that led to a material improement in presentation and to improvements to
several prools.

A 16
DO V 0 T

R. J. LIPTON. S. C.EISENSrAr. AND It. A. OIMILLO

REFERENCES

I Asisciori. E.. AND MANNA. Z The translation of GOT() programsk to WHILE program, Proc IHIP
Cong. 1971. North-Holland Pub, Co.. Amsterdam. 1972. pp. 250-255.

2. D61tM. C.- AND JAcommN. G. Flow-diagrams, Turing machines. and languages with only two formation
rules. Comm. AChE 9, 3 (March 1966). 366-37).

3. BRUNO. J.. AND STEIGLITZ, K. The expression of algorithms by charts. J. ACM 19. 3 (July 1972), 517-
525.

4. DAHL. 0-3.. ET AL. Structured programming. Academic Press. New% York. 197 2.
5. DEMILLO. R.A.. EtSENSTAT. S.C.. AND LirroN. R.J. Space-time tradeoffs in structured programming

(to appear).
6. EVtSELER. E. Structure and meaning of elementary programs. Lecture N~otes in Mathematics, No. 158:

Symip. on Semantics of Algorithmic Languages. E. Engeler. Ed.. Springer- Ve rag. Berlin. 197 1. pp. 89-
101.

7. HECiHT. M.S.. AND ULLMAN. J. D. Characterizations of reducible flow graphs. J. ACM 21. 3 (July
1974). 367-375.

8. KNUJTH. D.E. The Art of Computer Prograntming, Vol. 1: Fundamental Algoriithms. Addison-Wesley.
Reading. Mass.. 1968

9. KiUT. D.E. Structured programming with GOTO statements, Rep. STAN-CS-74-416. Computer Sci
Dep.. Stanford U.. Stanford. Calif.. 1974.

10. KNUJTH. D.E.. AND FLOYD. R.W. Notes on avoiding **go to" statements. Infor. Process. 1.er. 1 (197 1).
23-31.

II1. KOSARAJU. SR. Analysis of structured programs. J. Comtputer and Syst.'Sci. 9. 3 (June 1974). 232-255.
12. LEDGARn. HTF A geneolog) of control structures. Research Rep.. Computer and Information Science

Dep.. U. of Massachusetts. Amherst. Mass., 1974.
13. MoLEI. C. B Matris computations with FORTRAN and paging. Comm. ACM 15.4 (April 1972).,268-

270.
14. PERLIS. A.J., AND THORNTON. C. Symbol manipulation by threaded lists. Comm. ACM 3. 4 (AprilI 190). 201-202.
15. PETERSON,. W.W.. KASAMI. T.. AND TozURA. N. On the capabilities of the while. repeat. and exit

statements. Comm. ACM 16, 8 (Aug. 1973). 503-512.

16 ROSENnar. A.L. Preserving proximity in arraN% Rep. RC-4875. IBM Thomas J. Watson Research
Center. Yorktown Heights. N.Y.. 1974.

REEVED APRIL 1975; 1EviarD MARCH 1975

-. ~~ ~~ i.wj.i h A-.~.u. wLp.M.mhE.I hatm.. V.1 .i 1i 4. tkwidwr 1t,.

17

1.

SPACE-TIME TRADEOFFS IN STRUCTURED PROGRAMMING:
AN IMPROVED COMBINATORIAL EMBEDDING THEOREM

Richard A. DeMillo*
Stanley C. Eisenstatt

Richard J. Liptont

I
I

* School of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA 30332

t Computer Science Department
Yale University
New Haven, CT 06520

These results were announced at the 1976 Johns Hopkins Conference on Information
Sciences and Systems. This research was supported in part by the U.S. Army
Research Office, Grant Nos. DAHCO4-74-G-0179 and DAAG29-76-G-0338; the Office of
Naval Research, Grant No. N00014-67-097-0016; and the National Science Foundation,
Grant No. DCR-74-12870.

!

18

Abstract: Let G and G* be programs represented by directed graphs. We

define a relation ZS,T between G and G* that formalizes the notion of G*

simulating G with S-fold loss of space efficiency and T-fold loss of time

efficiency, and prove that if G s G*, where G has n statements and G* is
S,T

structured, then in the worst case T + log21og2 S Z log2n + 0(log 21og 2n).

Keywords and Phrases: ancestor tree, complexity, control structure,

directed graph, embedding

CR Categories: 4.22, 4.34, 5.24, 5.32

7-

Li

19

1. Introductioi

In a previous paper [1, we made precise some intuitive observations

concerning the efficiency of structured programs by defining a combinatorial

relation that corresponds to the notion of uniform simulation between programs.

Informally, we say that a program G* uniformly simulates a program G if G*

carries out the computation of G (and possibly additional computation which

might be regarded as "bookkeeping") in such a way that the space-time efficiency

of G is degraded by a factor that is independent of the size of G. The main

results of [1] indicate that the non-existence of uniform simulations among many

well-known classes of control structures is due to the combinatorial aspects of

program structure and is not at all related to such details of program organi-

zation as choice of data structures or limitations on the form of Boolean

expressions.

Indeed, the main result of [1] (Theorem 5.1) provides a non-trivial lower

bound on the loss of space-time efficiency in any structured simulation of a

goto program. This short note extends that result, improving the space-time

inequality of [1, Theorem 5.1] by an exponential. Thus we now show that there

are goto programs with n statements such that,for any structured simulation,

either:

1) the simulation runs at leastt

cIlog2n

times as slow as the original program,

or
I c2 n

3

2) the simulation has at least 2 statements.

t. , We use c1 , c2 , c3 to denote positive constants.

I*

20

I.e., there are goto programs that can only be simulated by either very Blow

or very large structured programs.

In the sequel, we will concentrate on the combinatorial theorem that

achieves these bounds. The programming language significance of the graphs

and relations studied here is discussed extensively in [I].

2. Preliminaries

. A directed graph G is an ordered pair (V,E) of vertices V and edges

* E c V x V. A path in G is an ordered sequence of vertices connected by edges.

For vertices x,y e V, let dG(x,y) denote the length of a minimum length path

form x to y. If no such path exists, then dG(X,y) .

A binary tree is a directed graph that consists of either a single vertex

Ior a root x and edges between x and the root of each of two binary trees called
-the left and right subtrees of x. A vertex x in a binary tree is a leaf if it

has no sons. If H = (V,E) is a binary tree with root r c V and leaf t c V, and

P = (x1,...,x n) is a direct path from x1 - r to x n -, then P is called a

branch of H. An ancestor tree G - (V,E) is a directed graph with the following

* properties:

1) There exists a subset E c E such that Go (V,E) is a binary tree;
0 0

2) If (x,y) c E - E, then y is an ancestor of x in Co.

Let G denote the n x n rook-connected array of vertices. If the vertices
n

! of C5 are indexed by (i,J) for lsi,Jsn, then, except for the obvious extremal

conventions, there are symmetric edges between (ij) and (i,J+1), (i+l,j).

For any directed graph G a (V,E), the notion of boundary makes sense.

Let A E V. Then the boundary of A is defined as

-(A) - {ycV-A: axeA such that (x,y)cEl

Clearly, a(A) denotes the set of vertices not in A which are reachable from A by

21

a single edge.t

By a simple improvement of a result from [I], we have the following

important property of arrays:

Lena 1: (Boundary Lemma) Let A be a set of vertices of Gn with JAI 5 n2/2.

Then

21AI 5 la(A)12 .

3. Graph Embedding

The following relation was defined in [I]. Let G (V,E) and G* = (V*,E*)

be directed graphs, and let S,T > 0. Then G < G* if there is a partialI -S,T
function (called an embedding) *:V* - Vu(A), of the nodes of G* to the nodes of

G and a special node A, such that

1) 0 10- (x)I 5 S for all x e V;

2) For all x e $-1 (V), ir dG*(O(x*),y) < - for some y c V, then there exists

Sy* E f-(y) such that dG(x*,y*) : dG((x*),y)-

If O(v) - A, then we refer to v* as a bookkeeping node. If 0(v*) - v*A,

then v* is said to be a copy of v. Condition (1) states that there are at most

S copies of any vcV in G*. Condition (2) states that the embedding induces at

most a T-fold increase in path length.

Theorem 1: D, Theorem 5.2] If S(n), T(n) are such that G < G* for' n -S(n),T(n)

some ancestor tree G*, then

T(n) + log 2S(n) a log 2n + c. (1)

The right hand side of inequality (1) cannot be improved, since with S(n) S 1,

the construction of L2] shows that

T(n) - 0(log 2n)

t The notion of boundary used here corresponds to the coboundary of [1],

22

is achievable for any n vertex graph. Theorem 1, however, gives only a linear

bound on S(n), and it has been conjectured that a non-polynomial lower bound on

S(n) exists. In the next section we obtain such a bound.

4. Main Theorem

In this section, we obtain the following improvement of Theorem 1:

Theorem 2: If G* is an ancestor tree and Gn <S(n),T(n) G*, then

T(n) + log2 log2 S(n) > log2n - 0(log2 1og2n).

Proof: For notational convenience, let us systematically confuse a graph with

*its set of vertices, so that "x c G" and "x E V" mean the same thing if G - (V,E).

We assume Gn -S,T < G* via an embedding 0. For any A* c G*, we use O(A*) to

denote the set of x c Gn which are 0-images of some x* c A*. Henceforth, we

- assume that G* is a binary tree; it will be obvious as we progress that if G*

contains ancestor edges, then the proof is completely unaffected.

Let P - (x*,..., *) be a path of G*. Then P is an adnissible path if it

is constructed as follows: For each x* (15isk), let L* denote the subtree of

x* containing x*+ ,and let S* denote the other subtree of x*; then either

a) O(R*) a O(L*)

or

! b) O(Rt) > n2/4.

Note that the definition of admissible path is more general than that used in L1].

Indeed, it is by proving the existence of many such admissible paths that we obtain

our result.

We fix an arbitrary admissi-ble path P - (xl,...,x) and define for i - 1, k

the subtree H* Lt u (*"). We shall say that H* is samaZZ if I9(H*)I 5 n2 /4;

otherwise HM is said to be Zarge. Let

!i
-- I [I I . . .

23

-. Dj- U O(H*);

Hi is small

in particular, Dk is the set of vertices in G which haive copies in some small H*.
ki

Lema 3: For some J,

n2 n 2

Proof: We need only show that there exists an integer j such that ID I n2/4,

since if j is the least such integer, then (assuming D01 - 0)

ID - IDJII + l-1 ,)l <- + R-- - n2/2.

We claim that l@(MR)l n2/4. For suppose otherwise, whence I$(L*)I - lO(R*)I

by the definition of an admissible path. Now

tG)- O(H*) u O)

so that

n2 _ I$(G*)I < I4O(L*)i + I + 1t(R*) 5 210(R*)I + 1,

* and thus

; I O(R*)l k n2/4.

Let j be such that I,(R*)] 0, and let i be the largest integer such that

I4(R*)f k n2/4. Then

lt(R*)] < n2/4, for L - i+l,...,J.

Hence,

. (H*)l - 1 + I4(L;)I s 1 + I0(R*)I < 1 + n2/4 for all I - i+l,...,n.

But then each sucea H* is small, and therefore

(R*) _ J (H*) E V .

But by the definition of I, ID I a n 2/4. 0

24

Letting k satisfy Lemma 3, we find that Dk satisfies the hypothesis of thek

Boundary Lemma, so that

1//2[Dk12 nI 3(Dk)I a Y1Dk

Lenmi 4: If tP is the number of large trees H* along an admissible path P, thenP i
n 2T "

* "Proof: Let
QT = {v* e H*, large: for some small H* and x* c H, d (x*,v*) 5 T).

i.e., QT is the set of vertices in large H* which are reachable from some node in

T i

a small H* by a path of length at most T. We show that la(Dk)1 IQTI by defining

an injection g : a(Dk) Q T For y c 3(Dk), choose some x c Dk adjacent to y.

Let x* be a copy of x in a small H*, let y* be a copy of y such that dG,(x*,y*) S T,

J and set g(y) - y*. Since Og(y) - 0(y*) - y, g is one-one. Thus, from (2),

IQTI Z xi(Dk) I ;7,

but

)QT) S 1[H* H* larseji

. I{v* : v* i H*, large; v* within distance T of root of H}II

5 1P • 2T 0
n/ /2

To complete the proof, we now show that there are at least 2 admissible

paths. Since each admissible path corresponds to a distinct leaft of G* and

Gn -S,T G*, we have

n 2T
2 " l(V) S SIVI - Sn2

and the result follows.

Without loss of generality, we assume that no leaf of G* is a bookkeeping node.

25

enma 5: There exist at least 2 admissible paths, where L mn 2 -T

Proof: We prove the result by showing that at least £ il independent binary

choices must be made to construct an arbitrary admissible path. Consider a

partial admissible path xI....,x k (i.e., the initial segment of an admissible

path). If only one subtree of xk is large, then the admissible path can only

be extended down that subtree. However, if both subtrees are large, then the

admissible path can be extended down either subtree without violating the

condition (a-b). By Lema 4, there are at least I min large subtrees along every

admissible path, and, for each such subtree, there is a node in the admissible

path with two large subtrees. EID

By using the modeling strategy detailed in Ell, we obtain the following:

*Corollar: For each n there is an n statement goto program Q such that for any

structured simulation of Q either

1) the simulating program is slower than Q by a factor of c, log n, or
or 2) the simulating program is larger than Q by a factor of 2c2n c 3 ,

An interesting interpretation of this result as a space-time tradeoff is

shown in Figure 1, which illustrates, for fixed n > 0,

S(T,n) > 2n/2

For any fixed value K 5 T 5 cI log n, limiting the loss of time efficiency in

the simulating program, the shaded region of Figure I shows the only values of

S,T which are achievable.

Acknowledgements: We would like to thank Nancy Lynch, Ronald Rivest, Albert Meyer
and Arnold Rosenberg for suggesting that we look for the
improved embedding theorem contained in this paper.

.| ,

II

26
References

1. R. J. Lipton, S. C. Eisenstat, and R. A. DeMillo, "Space-Time Hierarchies
for Control Structures and Data Structures," Journal of the ACM, Vol. 23,
No. 4, October 1976, pp. 720-737.

2. R. A. DeMillo, S. C. Eisenstat, and R. J. Lipton, "Preserving Average
Proximity in Arrays," Communications of the ACM, Vol. 21, No. 3, March
1978, pp. 228-231.

A

27

'--- Achievable Region

Impossible Region

K C1t10gA T
Figure 1. Trading-off Tn for Sn= [Il25 ,T

for f ixed program size1.

28

AN EMBEDDING RESULT FOR LABELLED PROGRAMS

Richard A. DeMillo*

School of Information and Computer Science
Georgia Institute £ Technology

Atlanta, GA 30332

S. Rao Kosaraju**

Department of Electrical Engineering
Johns Hopkins University

Baltimore, MD 21218

Supported in part by the U.S. Army Research Office, Grant NoB.
DAAG29-76-G-0338 and DAHCO4-74-G-0179.

** Supported in part by the National Science Foundation, Grant No.
." DCR75-09904.

29

INTRODUCTION

There are two natural methods of limiting the use of labels in

structured programs: bounding the number of labels that can be referenced

by a single statement and bounding the total number of labels which can

appear in a program. It is implicit in an argument of [i in the former

case and in the unbounded analog of both cases that a genuine limitation

is Imposed and power increases with the number of labels. We show here

that, in the latter case, programs with differing bounded numbers of labels

are provably equivalent in the precise sense of [1,21. From [3] it is known

that suitable restrictions on the notion of equivalence result in provable

differences among these constructs; these restrictions, however, rely on the

details of program organization. Hereafter, we deal only with combinatorial

arguments. Further motivation for the combinatorial properties in the

sequel may be found in Ill.

PRELIMINARIES

A directed graph G is composed of a set of vertices, V(G), and arcs

E(G) c V(G) x V(G). The arcs (x,y) and (y,x) together form an edge of G.

Arcs and edges are represented by directed and undirected arrows, respectively.

A path from x to y is a sequence of arcs

: ~~~(x, xl), (Xl, x2) . (xn 2 Xn) (xny)

and such a path is said to be of length n. We define the distance metric

d G Cxy) to be the minimum of the lengths of all paths from x to y.

dGXY

V

30

A binary tree with root x is a direcced graph that is either a single

vertex x or contains a vertex x connected by edges to root(s) yi of

subtree(s) G , I < 2. Note that d is symmetric on binary trees. Let G be

d binary tree with root x0 and consider the path (xo, x) ... , (Xnl, xn),

where x. + xj for i + j. We define the following relations on G:

(1) x. is a descendent of xi (0 < i < j < n)

(2) x. is an ancestor of x. (0 < i < j < n)

(3) x. is the father of xi+l (0 < i < n), and we writex = f (x i+l)

(4) xi+ 1 is a son of x1 (0 < i < n)

(5) x is leaf of G if fG(y) + xn for all y c V(G)

- In a binary tree G, the subtree with root x is denoted by G.
x

An ancestor tree is a directed graph G whose arcs may be partitioned into two

maximal subsets E1, E2 such that (V(G), E1) is a binary tree and if (x,y) c E2 ,

then y is an ancestor of x in the binary tree (V(G), E1). Thus, in an ancestor

tree a vertex may be connected by an arc to any of its ancestors. We use the

special notation x -a y, if (x,y) C E2. The following terminology is suggested
a 2

by [1]: if y 4 x then x is a label and y is an exit.
a

We then say that an ancestor tree, G, is a k-label program if it contains at

most k-labels; we also say that G is a k-exit program if it contains at most

k-exits.

I .

31

SPACE-TIME BOUNDED SIMULATIONS

The following definition is from [1]; it introduces a fundamental

mechanism for comparing programs. Let G, G* be directed graphs. We say

that G* simulates G with space dilation S > 0 and time dilation T > 0,

written G < S,T G* if there is a map (called an embedding of G in G*).

(: V(G*) V(G) U {A}, A f V(G) u V(G*)

such that:

(1) V u V(G)

0 < I 4,(u) < S

and

(2) V v* C V(G*) such that 4(v*) + A

v w C V(G) such that

d G((*), w) <

H w* C V(G*) such that D(w*) = w, and

dG,*(v*, w*) < T • dG(I(v*), w)

If D is an embedding and ?(u*) = A, then u* is said to be a bookkeeping vertex;

on the other hand, if D(u*) = u + A, then u* is said to be a copy of u.

Clearly, in a simulation of G with space dilation S, no vertex of G can have

more than S copies in the preimage of the embedding. In the sequel, we will

avoid some notational unpleasantness by agreeing that Al, A2, ... always denote

bookkeeping vertices and that ul*, u2*, ... Uk, k < S, always denote copies

U.

if

32

It is known that for every S, T > 0, there is an ancestor tree which

cannot be simulated with space and time dilation S and T by any 1-exit program

and for every S, T there is a 1-exit program which cannot be simulated with

space and time dilation S and T by any 1-label program. This is very suggestive

of a hierarchy in the number of labels for the < S,T relation, among ancestor

trees.

We can now show that such hierarchies collapse. That is, we show that for

every k > 1, there is a T > 0 such that every k-label program can be simulated

by some 1-label program with space dilation S = 1 and time dilation T = T(k).

We begin by considering a general embedding procedure which dilates space by

S(k) > 1, since this result is technically easier.

AN OBSERVATION

Let G be a binary tree with root x and consider a vertex y which is not

the father of two vertices. G can be modified by viewing y as the root and

inverting the father-son relationship along the path from x to y. Obviously,

the resulting graph is still a binary tree; we denote this tree by Gy .

MAIN SIMULATION RESULT

Let H be an ancestor tree and choose a vertex x of H such that Among the

descendents of x there is exactly one label y. Let H' be obtained from H by

replacing the subtree H by the graph shown in Figure 1.x

In this graph, K is H with its vertices subscripted by "l", L isx

(H - H yfH(y) with its vertices subscripted by "2", and M is H with itsx yy

vertices subscripted by "2". Thus a is a "second copy" of fH(y). In addition,

IH

i b I

33

each arc u - y or u - x is replaced by i u 2 u)2 while every
a a 1 a

u - v with v + x,y is replaced by uI - v and u 2) v. Then we have

H < ,H', which may be proved easily by a case analysis of the possible- 2,3

arcs in H and their copies in H'. Note further that if x is not a label,

then H' has the same number of labels as H, while if x is a label, the

total number of labels is decreased by one.

We now prove that any k-label program (k > 2) can be simulated by a

(k-l)-label program. To this end, let H be a k-label program, k > 2.

Two cases arise.

Case I. Some vertex x contains exactly one label in each of its subtrees.

If the root of either subtree is a label, no transformation is required for

that subtree. In all other cases, replace each subtree as above to yield a

k-label program H', where H <2,3 H' and in H' the sons of x are both labels.

Let the sons of x by y,z c V(H'). Now, clearly each arc u - y or u a z can
a a

be replaced by an arc u - x at the expense of dilating path lengths by one
a

arc. Hence, this transformation has the effect of replacing the pair of

labels y,z by a single label x. If H" is the result of such a transformation,

then since dH11 (x,y) = dH,, (x,z) = 1, we have H < 2,3 H".

Case II. Some label vertex x has exactly one label y as a descendent. The

transformation given above when applied to the subtree rooted at x yields a

k-l label program H' such that H < 2,3 H'

Thus, every k-label program is simulated with S = 2, T = 4 by a k-l label

program. We have immediately that every k-label program H is simulated by

some 1-label program G with S, T independent of IV(H)I; more specifically

34
k-I k-1

S = T ff4 It is easily seen that for every S, T there Is a

1-label program which cannot be simulated by any 0-label program (i.e.,

,. by a binary tree).

AN IMPROVEMENT

The vertex duplication in the construction above is somewhat artificial;

it is used only to keep track of "end points" of circuits, and we might try

to use some inherent symmetry in the problem to avoid such duplication. In

fact, such duplication need never be introduced. That is, we can prove that

for every k-label program H, (k > 2) there is a (k-l)-label program H' such

that H < H'.-1,4

Let B denote the regular graph on n vertices with degree 2, shown inn

Figure 2. If V(Bn) n {al ... , an 1, then Bn <1,3 GO; and Bn < 1,4GI , when

G and C1 are as shown in Figures 3(a) and 3(b), respectively.

The first simulation is apparently the better of the two, but in fact the

simulation H < 1,4GI is the one which is to be preferred for the simulation to

be described.

Using this transformation, given a tree H, as shown in Figure 4(a), we

embed U < 1,4 H* where H* is as in Figure 4(b). As in the case Bn < 1,4G
, we

now have a1 and an relatively close to each other. For obvious reasons, we call

this transformation a folding of H.

Now suppose that H is a subtree of a k-label program H (k > 2) that a and

an are both labels, V(H1) has no other label, and none of a2 , , a n- is a

label. We then form H' by folding H and replacing each u - a by u - a If
a n aV

no such subtree H of H0 exists, then no label is related to any other as either

35

a descendent or an ancestor. But since each {x,y) c V(HO) share a common

ancestor (viz. the root of HO) choose any two labels x,y and let z be their

deepest common ancestor. This identifies subtrees of the form H with a1 = z

and a C {x,y}. Fold each of these subtrees and replace each arc u + x orn a

u - y by u - z. Then, if the resulting ancestor tree is H', we have
a a

H0 < 1,4H ' .

Note that the passage from a k-label program to a 1-label program still

requires T = 4k-
1 It is not known if this is (asymptotically) the best

possible.

E4

36

REFERENCES

1. R. Lipton, S. Eisenstat, R. DeMillo, "Space and Time Hierarchies for
Classes of Control Structures and Data Structures", Journal of the ACM,
Vol. 23, No. 4, Oct 1976, pp. 720-732.

2. R. DeMillo, S. Eisenstat, R. Lipton, "Space-Time Tradeoffs in Structured
Programming: An Improved Combinatorial Embedding Theorem" (to appear);
parts of this paper appear as "Space-Time Tradeoffs in Structured
Programming", Proceedings of the 1976 Johns Hopkins Conference in
Information Sciences and Systems, pp. 431-434.

3. S. R. Kosaraju, "Analysis of Structure Programs", Journal of Computer
and System Sciences, Vol. 9, No. 3, Dec 1974, pp. 232-255.

$

"" 37

A2

X1 Y2

1 M1

.' Figure 1. Modification of H

38

a2

an-i1

0an

Figure 2. The Graph B n

39

aa,

an2

a3
3

an- (upr1n

a
1 loer

40

a,

HH

iI~ n

1al

T H

Figure 4. The trees H (upper) and H* (lower)

41
1. Introduction

Efficient algorithms often require specific data
structures on which to operate. In many of the algo-
rithms of Il, for instance, the running time depends
critically on the number of probes of the data structure
needed to access a single data item. In practical com-
putation, however, many factors interfere with optimal

Programming S. L. Graham, R. L. Rivest, data organization. Among the most important of these
Techniques Editors factors is the locality of references in data structures.

Since most data structures are arranged lincarly inPreserving A verage memory, a set of local references to the structures can

Proxim ity in A rrays require accessing of data elements widely separated inProx A rra. s memory. This is particularly relevant in paging envi-

Richard A. DeMillo ronments where a page fault may occur during access
GRia .tt lo Technof elements which are logically adjacent in a data
Georgia Institute of Technology structure.
Stanley C. Eisenstat and Richard J. Lipton In 161, Rosenberg examined the problem of storing
Yale University arrays as a linear structure with bounded loss of

proximity between data elements and showed that ail'
such storage scheme must, in the worst case, induce

Programmers and data structure designers are unbounded loss of proximity. In previous papers 12.
often forced to choose between alternative structures. 4], we considered the proximity-preserving issue in a
In storing these structures, preserving logical more general setting. We used graphs to represent
adjacencies or "proximity" is usually an important data structures as described in 13]: vertices represent
consideration. The combinatorial problem of storing data elements or nodes, and edges represent logical
arrays as various kinds of list structures is examined. adjacencies; if G and H are graphs, we write G s, H
Embeddings of graphs are used to model the loss of if G can be "stored" as H so that no adjacent nodes of
proximity involved in such storage schemes, and an G are more than a distance T apart in H. Using this
elementary proof that arrays cannot be stored as linear model we were able to show that if G. is an n x n
lists with bounded loss of proximity is presented. array and H is any of a very general type of structure
Average loss of proximity is then considered, and it is (including as subcases linear lists, binary trees, and
shown that arrays cannot be stored as linear lists with threaded lists 151). then G, sn,, H only if
only bounded loss of average proximity, but can be so T(n) I (1/3) log n - 2/3.(
stored in binary trees. The former result implies, for
instance, that row major order is an asymptotically In particular. (I) shows that arrays cannot be stored
optimal storage strategy for arrays. in trees or lists with bounded loss of proximity, extend-

Key Words and Phrases: arrays, graph embedding, ing the result of Rosenberg 161.
linear lists, proximit), average proximity, trees The lower bound represented by inequality (I) is a

CR Categories: 4.34. 5.24. 5.25, 5.32 worst-case result. Since algorithms which manipulate
data structures tend to "look at" all of the data. it
seems natural to investigate the average loss of prox-
imity involved in storing arrays as various list struc-
tures. We find a distinction between linear memory
and arbitrary lists: arrays can be stored as nonlinear

General pcrmision tit make fair use in teaching or research of lists with bounded loss of average proximity. but cannot
all or part tif thi, material is granted it) individual readers and to
nonprofit libraries acting fii them provided that ACM's copyright be so stored in linear memory.
notice is given and that reference is made to the publication. to its
date of issue, and to the fact that reprinting privileges were granted
by permission of the A.miooation for Computing Machinery. To
otherise reprint a figure. table. other substantial excerpt, or the 2. Graphs and Embeddings
entire work requires specific permission as does republication. or
systematic or multiple reproduction

Thi work was supported in part hk the US Army Research By a graph G = (V, E) we mean a set V of vertices
Office under grant% DAH('W74--O79 and DAAG29-76-G- and a set E of unordered pairs of vertices, the edges.
03.18. by the Office of Naval Research under grant N00014-67- Note that all graphs we discuss are undirected. i.e. {x,
1N17-4)(llh. and h, the National Science Foundation under grant
DLR74-1287i Authors current addresses R DeMillo, School of y) E E iff {y, x) E E. An edge between two verticesx
Information and Computer Science. Georgia Institute of Technol- andy is represented
ogts, Atlanta. iA 3 132. S Fisenstai and R Lipton, Computer
Science Dcpartment. Yale Lniverit,. New Haven. (F 06520 X y
0 1978 AC(M IN4)782/78/0300-0228 N1w 7. ('--

Communications March 1978
of Volume 21
the ACM Number 3

42

A path of lengthn betweenx,y E V exists if there isa Fig. I. Graph G,.
sequence of edges x0 , x, {x, x, .. {x.,_, x.} with

.= x and x. = y. If G = (V, E) andx, y E V, then3
dG(x. y) is defined to be the length of a minimal length
path betweenx andy. A graph G is intended to model
a data structure; therefore we think of the vertices of K22 23

G as nodes of the structure and edges of G as repre-
senting logical adjacencies in the structure.

We shall consider three classes of data structures, x31 x IXE
defined by the classes of graphs which represent them.

Lines. A line L is a graph ({xt,.. , E) with Fig 2. Illustration of G sT G.
Ix,, E E iffj = i + 1. For example,

path ofX1 X2 X3 X, l .engh-T________between

0,. t

represents a line with n nodes.

Binary Trees. A binary tree is a graph which is A main result of 141 is that arrays cannot be stored
either empty or consists recursively of a root connected as binary trees with only bounded loss of worst-case
by edges to the roots of binary trees called the left and proximity. The precise statement of this result is
right subtrees of the root. We assume the elementary THEOREM 1. Let {GJ}., be the class of n x n
properties of trees as described in 11, 31. arrays. If G, :s.) H for some binary tree H, then

Arrays. Ann x n array G. is a graph({x,.j),, ,
E) with {x,,, x,.j+,) E E andf{x,., xj+,. E E for all 1 -< T(n) >- log n - 3/2.
i <n and I s < n. The 3 x 3 array G3 is shown in For completeness. we sketch the proof of Theorem
Figure 1. Modelingn x n arrays as graphs of the form I (cf. 141). We require an additional definition, which
G, does not recover the notion of "randomly" access- will also be useful in a later result.
ing arrayelements. But. as noted in 14, 6J. algorithms Definition. Let G = (V, E) be a graph and let A C
which operate on arrays tend to access array elements V. The boundary a(A) of A is the set of vertices in A
"locally," e.g. along rows and columns or, as in the adjacent to vertices in V - A, i.e.
Strassen matrix multiplication algorithm, as 2 x 2
subarrays I I]. For these purposes the above represen- 8(A) = {x E A: for somey E V - A, fx,) E E).
tation of arrays is entirely faithful to the adjacency A key property of the boundary operator is given
properties of arrays. by the following lemma (see I41).

Given two classes of graphs X and Y which repre- BOUNDARY LEMMA. If G, = (V., E.) is an array
sent distinct data structures, it is often natural to ask and A r V, is such that JA S n"2/2,' then
whether or not each G E X can be "represented" as
some H E Y in such a way as to preserve the accessing I I < 2 Ia(A)1 2.
characteristics of G. Furthermore, we may want such a PRooF OF THEOREM 1. Assume G, s,, H where
representation of G to preserve proximity; that is. the G. = (V, E,), and let H = (V, E) be as shown in
representation of G in H should be such that adjacent Figure 4, where H, . . . , Hk are subtrees of H and
nodes in G are represented within some bounded Hk = (VAk', E t 1) has the following property:
distance of each other in H. The need for preserving
proximity in this fashion has been defended by Rosen- n2/4 :s I{x E V,: 42(x) E Vtkl)) -n2/2.
berg (61. Let Ak denote {x E V.: 0(x) E Vl"A}. Then I14

The combinatorial aspects of this sort of represen- satisfies the hypothesis of the Boundary Lemma, and
tation are recovered by the following definition (see thus
Figure 2):

Definition. Let G = (V, E) and G = (V , E*) be I8(Ak)l 2" (I/,'2)IAkI'* z n/2v2.
graphs, and let T a I. We say that G is T-embeddable By definition, ifx E d(A), then dG.(x, y) = 1 for some
in G* (written G !s G*) if there is an injection O:V y E V - A,,, and thus, since G, zn., H,
- V" (called an embedding) such that for all fx, y) e
E, d 0 W. 42(Y)) ! T. d,(,t(x), 4 2(y)) s T(n).

Example. Let K. = (Ix, ... x.), E) be the But
complete graph onn nodes; i.e. {x, x) E E for all I s
i,j :n withi * j. Let H be the graph shown in Figure H{V V'5 ':d (u,s) < T(n)
3. Then it is easily verified that K, !5 H via the
embedding (D(x,) = y(for i = 1, . . , , n. If S is a set. I S denotes the cardinality of S.

Communications Match 1978
of Volume 21
the ACM Number 3

43

Fig. 3 Graph H linear structure, such as a linear list or in linear

r memory.
THEOREm 2. Let {G.). I be the class of n x n

arrays. If G. <sA1, L for a line L, then

A(n) 2! n/12.

PaooF. Assume G <-v, L where L = ({x, ..
x.}, E) is a line. It is clearly sufficient to assume that" " m = n' since, if G. s '. L by an embedding 4 and x,

YJ Y, Y 4t 4)(V.), then 4) also defines anA(n) average embed-
Fig 4 Decomposition of/m. ding of G. into the line with Xk removed.

Let D, {-4)(xj): 1 : j -< i} for 1 :5 i :5 n2/2 so
that I Di = i ! n2/2 (see Figure 5). For eachy E a(Di)
there is an edge between y and some node not in D,;

/ hence there is a path between 0(y) and some node not
H, in O(D) which must pass through x,. Since IDi I s

H2 n1/2, by the Boundary Lemma each O(D,) makes a
contribution of at least (I DI/2)" to

\ Y I do.(,,), 0)(y)).
(z,iE n

For suppose 4 - Xk) and 4)- (xi) (k < I) are adjacent
Hk, H, in G.. Then the I - k + 1 that this adjacency should

for some u E V - V "}I - 2 T"; add to the sum accrues by xk's membership in O(D,),

therefore
)O(Dk.), . . . , 4(D- 1). each membership contributing
I to the sum.

2""' z 1i(Ak)I z n/2,2, Therefore

or 012

T(n) logn - -3/ 2. 0 X d.(4)(x). 4y)) I X DI"2
4z.wIE. V'2 I-

Actually, in 121 we prove a much stronger result: If, 3
we allow embeddings of n x n arrays which not only - i /2 (d
preserve proximity by a factor of T(n) but which also v'2 N/2 = 6

may -split" a vertex at most S(n) times, then Hence

T(n) + log log S(n) - c" logn n3/6 S A(n)IEI = A(n)(2n2
- 2n),

wherec is a fixed positive constant independent of n. which yields A(n) > n/12. 0
An interesting interpretation of this result is that

any reasonable sequential method of array storage is
3. Preserving Average Proximity asymptotically optimal with respect to proximity. Con-

sider. for instance, an embedding it of G. into a line L
The relation sr represents a worst-case analysis of which places nodes of G. in row-major order; that is.

proximity-preserving transformations. Since data struc- 4) (xij) = xi-,+-i. With this embedding into L.
tures are frequently accessed "uniformly" in that the
probability of access to a particular node by a particular G. S (,, L.
edge is uniformly distributed, Theorem I leaves open
the question of whether or not there are ways to store By Theorem 4.2 of 161, row-major storage is also
arrays as various other structures which, on the average, optimal for worst-case proximity.
preserve proximity. To investigate this problem we In contrast to Theorems and 2. we have the

need an additional definition. following.

Definition. Let G = (V, E) and G" = (V*, E*) be THEOREM 3. When n is a power of 2, there is a
graphs. We say that G is A .average embeddable (writ- binary tree H such that G. s' H.
ten G %210 G*) if there is an embedding 0:V -- V PROOF. Let G. = (V., E.) be given and suppose n

such that = 2k for some k. We shall describe a recursive method
of embedding G. into a complete binary tree. Divide

Y d,;.(44(x), 4)(y)) < A "E. G. into fourn/2 x n/2 subarrays (see Figure 6(a)) and
• ' a-"e £ attach the subarrays as leaves of a complete binary tree

We first consider the case of storing an array as a H as shown in Figure 6(b)).

Communications March 197S
of Volume 21
the ACM Number 3

44

Fig. 5. Embedded edges in L. path of length k grows as 2 in a complete binary tree
0 " X, , versus k2 in an array, it is important to note that not

- - - any embedding technique will work in the proof of
01 tTheorem 3. Similarly, not every graph in which fewer

than 2* vertices can be reached by paths of length k
Fig. 6. Illustration of embedding of Theorem 3. (a) Recursive can be embedded by using the recursive decomposition
decomposition of G.. (b) Embedding G. into complete binary tree. of Theorem 3; the graph must have the property that

it can be "cut" into regions with boundaries that are
not too large. A basic question to be resolved is

Al A,, , whether or not any family of graphs with neighbor-

----- n Ahoods growing slower than 2 are A -average embedd-
able in trees for some constant A.

A2, A22
Acknowledgments. We would like to thank Arnold

n Rosenberg for his thoughtful comments on a draft of
A,, (v,,.Ej this paper and Larry Snyder for several helpful sugges-

tions.

Received March 1976; revised January 1977

1. Aho. A.. Hopcroft. J., and UlIman. J.D. The Design and
Analysis of Compaer Algorithms. Addison-Wesley. Reading.
Mass., 1974.
2. DeMillo, R.A.. Eisenstat. S.C., and Lipton. R.J. Space-time
tradeoffs in structured programming. Proc. 1976 Conf. on Inform
Sci. and Syst., Baltimore, Md., 1976. pp. 431-434.

A 3. Knuth. D.E. TA Art of Computer Programming. Vol. I:
A,, A,, A,, A,, Fundamental Algorithms Addison-Wesle). 1968. p. 305ff.

4. Lipton. R.J. Eisenstat. S.C.. and DeMillo. R.A. Space and
Clearly time hierarchies for classes of control structures and data structures.

J. ACM 23.4 (1976). 720-732X dH(-O(x),
4)(y)) S N S. Perlis. A.J.. and Thornton, C. Symbol maripulation by

tr.uIES. (2) threaded lists, Comm. ACM 3. 4 (1960). 201-202.
6. Rosenberg. A.L. Preserving proximity in arrays. SIAM J.

+ , dj,((x),4)(y)), Comm g. 4.4 (1975). 3-460.
Aq ta.ae9l 7.. Rosenberg. A.L. Managing storage for extendible arrays. Proc.

S! th ACM Symp on the Theory of Comptng.. Seattle. Wash..
where N is the sum of the lengths of the 2n paths 1474. pp. 293-302
between the 4n - 4 nodes along the boundaries of the
A,,. By continuing this process recursively, we can
suppose that the A,, of Figure 6(b) are themselves Coniem.. Turing Award Lectures
complete binary trees, and therefore we may bound N Michael 0. Rabin, "Complexity of Computations."
in inequality (2) by Comm. ACM 20.9 (September 1977). 625-633.

N s 2n[2 log (n2/4) + 4] = 8n log n . Page 626, first paragraph, second sentence: replace

This leads to the following recurrence forf(n), the sum :" after "communications" by ";". In column I. line 16

of the lengths of paths which correspond under 0 to should begin "...Considerable...". In Column 2, the first

embedded edges of an n X n array: term of equation (2) should be a,, and the first word that
follows that equation is "of'. On page 627. the title to

fil) 0 section 2.5 begins with "Smrtg."

fin) 4& 4~/2) + 8n log n . On page 628, in column 2, line 21 ,/p(s) should be I(S).
In column 2 of page 629, line 15 has a comma before

The solution to this recurrence satisfies "holds" and on line 18 "E. Blum" should be "M. Blum."

f(n) S 16(41s" R) - 8n log n - 16n. On page 630, column 1, the expression on the first and
second lines should read "G(o,.a,,ao,...,a,)", and

Thus on line 8 the author is Motzkin. On page 63 1, column I,

A = I line 9, "0(n')" should be "o(n')". In column 2, line 12
d.(4,(x),4,(y) 1 IE,,I should read "such that for every no < n" and line 14

fin) 8; - 4n log n - &should read "satisfying (I) e (H) - n, and (2)...". The
S8. 0 theorem's statement should end with "Here t'(H) de-2(n - n) if- n notes the length of H."

For n not a power of 2, Theorem 3 clearly can be Line 4 of column I of page 633 should read "secrecy.",
modified to hold with a slightly larger constant. and the following paragraph should end with a question

Even though the number of vertices reachable by a mark.

Commumcations March 1978
of Volume 21
the ACM Number 3

!0!

45

THE AVERAGE LENGTH OF PATHS

EMBEDDED IN TREES*

Richard A. DeMillo
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, Ga. 30332

Richard J. Lipton
Department of Ccmputer Science

Yale University
New Haven, Ct. 06520

A grap, G, consists of vertices V(G) and edges E(G); paths are sequences

of vertices connected by edges, and path length is defined by the number of

edges along the path. For x,y E V(G) we use dG(x,y) to denote the length of a

minimal length path between x and y, if such a path exists. An n x n arr,

Gn, consists of vertices V(G n) = {x jjij<_n and edges which, except at the

obvious extremal conditions, are linked as follows:

T The work of both authors was supported in part by the U.S. Army Research

Office, Grant No. DAAG29-76-G-0338.
I

46

(Xj Xi+lij) E(Gn), and

(xi~j xij+l) c E(Gn).

Such graphs are also called rook-connected. A binary tree is as defined

in [1,2]; that is, a binary tree H is a connected acyclic graph with a

designated root and ancestor - descendent relation defined so that each

x E V(H) has at most two immediate descendents.

Let us write G < TH when there is a one-one mapping (called an em-

WO bedding of G into H € : V(G) - V(H), such that for all (x,y) c E(G),

d H d(O(x) , -D(y)) < T.

As described in (1], it follows from simple volumetric arguments that for

all T > 0, there exists a binary tree H such that H fi n , for all n > 1.

The corresponding intuition for Gn < ,,H doer not hld. It would now seem

that since in Gn

I {x c V(G n): d(, (x,y) < k) o(V) (1)1 n -

while in a complete binary tree H

I {x :CH): dH (x,y)} I _ 2k-l (2)

that Gn < TH would now be pos- 1ble for some bounded T. It is therefore

somewhat surprising that Gn < TH only if

T > log n - 1.5

(See [1], for details).

4S 47

It is still obvious from inspection that neighborhoods in trees can be

much more densely growing than neighborhoods in arrays, and therefore by

choosing a suitably global measure of loss of proximity, this difference

should be distinguishable. In [2) we considered such a measure:

G < edge G* if for some embedding ? : V(G) + V(G*)
- A

Ida,(O(x), O(y)) < A J E(G) I.

(x,y) e E(G)

It follows [2] that for b = 8.5

G < edge Hn- b

for some binary tree H. This upper bound can be improved to b = 7 -o() t

The relation < edge may be thought of as averaging - with relative
-A

frequencies uniformly distributed to the edges E(G) - over the edges of G.

We now make a more global definition which finally may be used to recover

our original, although imprecise, intuitions about path lengths in binary

trees. We will essentially average over shortest paths:

G < paths G* if one is an embedding 0 V(G) V(G*) such that
A

r n <A An

where

r= d," (W(A,O(y))Fn

" 0(x) ,$(y)

t L. Snyder, private commnication.

48

and

A n- dG(xy).

x ,y

We then have the following theorem.

Theorem. For each n > 0, let A be the least real number such that-- n

G < paths H,
n- A

for a binary tree H. Then

limA limn / A 0.
n n n

Proof we first show

A= s(n5)

Let us choose B1 , B2 cV(Gn) so that

B1 -- {xij : li, j n/ 4}

B2 = {xij : 3n < i,j <n}

4

so that IBx = In / 16]2. Now clearly, for any (x,y) B x B2

dG (x,y) > n /2,
n 7

I
49

and hence by definition

A > n5 /512
= (n5)

We now obtain the following upper bound for rnn

14" n = O(n log n).

As in [2] let Aij c V(G n), 1 < i, j < 2, IAij = n2 / 4,

Denote the n / 2 x n / 2 decomposition of G and notice thatn

F(n)< 4 n log n.

Thus r(n) < an4 log n + On4 from which the theorem follows directly.

1. R.J. Lipton, S. Eisenstat, R.A. DeMillo, "Space and Time Hierarchies
for Classes of Control Structures and Data Structures", Journal of
the ACM, Vol. 23, No. 4, Oct. 1976, pp. 720-732.

2. R.A. DeMillo, S.C. Eisenstat, R.J. Lipton, "Preserving Average Prox-
imity in Arrays", Communications of the ACM (to appear).

I !

50

ON SMALL UNIVERSAL DATA STRUCTURES
AND RELATED COMBINATORIAL PROBLEMS t

(Preliminary Report)

Richard DeMillo

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

Stanley Eisenstat
Richard J. Lipton

Department of Computer Science
Yale University

New Haven, CT 06520

t Work supported in part by U.S. Army Research Office, Grant No. DAAG29-76-
G-0338, and by the Mathematics Research Center, University of Wisconsin-
Madison.

.I

7' 51

INTRODUCTION

One of the most significant changes in theoretical computer science

has been the recent infusion of the methods and problems from combinatorial

analysis. Among the most powerful combinatorial theorems which have been

imported to computer science are those of extremal graph theory [1]: in

extremal graph theory, one is interested in the largest (or in complementary

problems, the smallest) graph which avoids (or contains) a given structure.

Purely combinatorial results (which have significance, e.g., for the design

of circuit boards) have been obtained by Chung and Graham [2] and by Chung,

Graham, and Pippenger [3]. In this paper, we extend this theory to

encompass results concerning data structures.

As motivation for the results to the described, note that many of the

large data structures manipulated by the programs described in [4,5] have

two characteristics

(i) they are sequentially accessed, and

(ii) many distinct structures convolve in the
same physical memory.

For applications of this sort, it would obviously be desirable to have

available a universal data structure in which all data structures from a

given class may gracefully reside. In view of (i), by "graceful" we mean

that the sequential accessing characteristics of the embedded data structures

are not too drastically altered. Let us measure such alterations by the

dilation of logical adjacencies [6,7] needed to embed all structures from a

given class into a universal structure; this is then a complementary

extremal graph theory problem: what is the size (number of edges) of the

smallest universal graph for a given dilation factor.

.4,

52

The main results contained in this paper address such problems from

a number of points of view.

(1) We give several asymptotically optimal universal data
structures for graphs of n vertices when average dilation
[7] is used as a measure.

(2) We discuss a universal data structure for graphs of n
vertices where worst-case dilation is used as a measure [6].

(3) We consider variations of the average diZation measure
which gives favorable comparisons between data structures
studied in [6,7].

(4) We consider the kinds of "sharing" that can take place
between "almost linear" and "almost complete tree-like"

structures.

(5) Finally, we propose a data structure embedding model which
recovers some aspects of random accessing of data items,

, and prove a space-time tradeoff which seems to indicate
that no savings is possible in RAM models which assess
accessings costs unirormly [8].

PRELIMINARIES

A graph, G, is defined by its verties, V(G), and edges,

E(G) c V(G) x V(G). Edges are assumed to be undirected: a pair of vertices

x,y are connected if either (x,y) c E(G) or (y,x) C E(G). A path between

Xo, xn is said to be of length n. The distance metric dG(xO , xn) is defined

to be n if there is no shorter path than Xo,...,xn.

A graph represents a data structure in the obvious way: vertices

represent nodes or records and connectedness models logical adjacency.

The following relations and their significance for data structures can be

found in (6,7]. Let G, G* be graphs. We say that G is T-worst case

embeddable in G* (G< G*) if there is a one-one 4:V(G)-V(G*) such that (x,y)

c E(G) implies

. dG,(0(x), ;D(y)) <T- (1)

53

Similarly, G is A-average case embeddable in G* (G C avg G*) if there
A

is a one-one f as above such that

dG,(f(x), (y)) < A IE(G)I. (2)
xy

connected

In [4,5], comparisons between several natural classes of graphs give

asymptotic bounds on T, A in (1), (2) as functions of JV(G)J. Shortly

after the announcement of the results of [6], R. M. Karp suggested to us

the following class of problems connected with extremal graph theory:

what are the characteristics of <T - universal data structures; i.e.,

those structures which T-worst case embed all graphs in a given class.

This paper grew out of considering these problems.t
UNIVERSAL GRAPHS

Let n be a given class of graphs G, jV(G) = n. Let us ask about a

data structure which is <T or < avg universaZ for n. In particular, let
-ST -A

us define

w(n , T) =m {IE(G)I: G n , Gn :T G1 (3)

and

a(n , A) - min I{E(G)I:Gn C e , GP < avg G).
_ - A

For T = 1, (3) becomes the complementary extremal graph problem studied

in [2,3].

By an n-tree G, we mean a connected acyclic graph G, with IV(G)I = n.

It is also convenient to think of trees as rooted in the following sense:

accompanying G, there is an ancestor-descendent relation that assigns

direct ancestors and direct descendents to vertices in the obvious way so

that a vertex with no ancestors can be designated as the root of the tree.

7-

54

(Obviously this choice is not going to be unique, but we assume that G

is not characterized until such a choice is made). A d-ary n-tree is an

n-tree in which each vertex has at most d direct descendents. We denote,
n n*

respectively, the classes of n-trees and d-ary n-trees by rn and rd

By [2] it is known that 4n log n < w n , 1) < n l +k (n) k(n) =

[log log n] - 1 . t

The upper bound was improved in [3] to

w(rn , 1) O(n log n[log log n]
2

The bounds on a(un, 1) are apparently not elsewhere considered.

Superficially, at least, all interest in further characterization of

(3) is destroyed by the following obvious

Theorem. For T > 2

w(rn, T) = n

Of course, in (3), the "target" graph G may have unbounded degree.

Therefore, it is natural to consider w(On , T, S) and a(,n, T, S) where in

both cases the target graph G is restricted to be in the set S. Note that

now the theorem just cited is no longer obviously true.

* Thus = binary trees on n vertices.

t In the sequel, we use log x for log2 x and knx for logeX.

2 --

55

The best that is known is the upper bound of [3] (S - all cubic

graphs)

wUn , ., S) :S 2-y--exp (log 2n/2 log 2) (4)-- n

It is not obvious that when (i) "targets" are restricted to binary trees

and (ii) w(r2n, T, rn) is considered, that it is possible to do any better
2 2

than the union of all trees in r2, giving a structure of size 21rn

But, we have the following

Theorem. For each T > 1, there is a binary tree R, such that G >T H

for all G c r, and

ZnJE(G)j n n

or in other words

w(r T, r) = exp r- (kn n) 2 + o((Zn n)2)

A key step in the proof of this theorem hinges on the solution to

the fascinating "almost linear" recurrence

un u nl+ u[(5)

first considered by Knuth (9]. This also establishes a connection

between the theorem and ineq. (4): u is also the number of partitions

of 2n of the form Ed1 2i , xi 0, 1. Knuth [9] bounds the partition

function

P(m) - exp (r.-m).

3

.*... . .i

56

There are two possibilities for improving the bounds in w(14, T, r2).

The first possibility is to introduce circuits to the target graph of the

previous theorem, but this does not appear to give an asymptotically

better bound than (4). The second possibility is to prove that balanced

trees and unbalanced trees are < T - equivalent. This seems unlikely since

combining such a result with the proof method of the previous theorem

gives a polynomial sized universal tree. However, in trying to improve

the bounds on w(r2, T, r) it may be desirable to ignore irregular trees,

letting only very balanced or very unbalanced trees reside in the same

universal data structure.

In any case, it seems unlikely that polynomial structures are possible.

We are, however, far from proving this; indeed, the best known lower bound

is the following

Theorem. For all n > N

w(r2, T, r) > c(T) n log n

where c(T) > 0 is a constant for fixed T > 1.

Certain other subcases are also of interest.
Erd~s, Chung, and Graham

t

consider w(S,l) and obtain

2 1w(s,1) < Tn.

The following theorem is an improvement, but is strely not the best

possible bound.

Theorem
I 2 2

w(Sl) _< n

t Private Communication.

57

A non-trivial lower bound would clearly be desirable. Another class of

interest are graphs of high genus. We conjecture that for graphs of

fixed genus y, it is possible to do better than the naive () bound

obtained by embedding in the complete graph.

Our next series of results show impressive improvements by passing

to average dilations. We now get optimal constructions, even in a variety

of limited settings.

We have, for instance, the

Theorem. For a > 0,

n I) 0(l o g (2 + a))
a(r 2 , S)-, (

Since there is a linear lower bound on a(o,*,*), this construction is

optimal. By a slight modification of the construction, this gives

a(rn, A, S) = 0(n), for all A > 1, but this result may be superceeded by
°2

the following

Theorem. For each A > 1, there is a binary tree H, such that

G < avg H-A

for all G c r2, and
2'

IE(G)I - 0(n)

or, in other words

a(r n A, , 0(n)

tt A graph is of genus y if it can be embedded in a sphere with Y

handles (10].

58

These results are related to the ability to "cut" graphs in

advantageous ways. For example, a generalization of the planar separator

theorem [11] to graphs of high genus, obtained by Lipton and Tarjan, gives

us the following

Theorem. Let Ln be the class of graphs G with genus y and IV(G)I = n.
Y

Then, for all n > N,

a(,A, r') <c (A).on,n n

where c(A) does not depend on n.

EXTENDED MDDEL

In comparing classes of data structures (see, e.g., [6,7], the measures

of "efficiency" have implicitly assumed that only sequential accessing is

important. Thus, when in [6], we bound the efficiency, T, of an embedding

of n x n array into binary trees by

T > c log n

the function T(n) captures the dilation factor in an embedding. We now

describe a generalization of this concept which recovers a certain kind of

random accessing. Since the precise definitions are quite complex, we will

settle for a less exact -- but mre picturesque - rendering. Let us assume

that we have in front of us an illustration of a graph G, and also a number

of friends who agree to lend us their forefingers for use in tracing the

paths of the graph. Our friends oblige us as follows: We may start

traversing at any vertex already visited. The traversal rule is, then,

i ithat we must either traverse graph edges or "Jump" to a vertex pointed to

59

by a friend. The time required to traverse a sequence of vertices is then

simply the number of applications of traversal rules. Notice that the

result of a traversal is not necessarily a path of G. The connection

between fingers and random accessing is that traversals requiring k-fingers

also require k-"addresses" for the vertices pointed to.

We then say that G < k,T G* if there is a one-one 4:V(G) -+ V(G*), so

that for every x,y C V(G) with d (xy) - m, there is a k-finger traversalGI

from O(x) - x* to 0(y) - y* with time at most A, and A < TdG* (X*, y*).

We have the following

Theorem. If G is the n x n array [7], H is a binary treen

and

Sn -< k, L(n) H ,

then

k + T(n) > c log n ,

where c is a constant independent of n.

OTHER TYPES OF AVERAGE EMBEDDING

The relation < avg may be thought of as averaging - with relative-A
frequencies uniformly distributed to the edges E(G) - over the edges of G.

We now make a more global definition which may be used to recover our

intuitions about path lengths in binary trees [7]. We will essentially

average our shortest paths:

G < paths G* if there is an embedding O:V(G) * V(G*) such that

EdG ((A, 0(y)) A- d (xy)
' O(x, 0(y) x~y

60
We then have the following

Theorem For each n > 0, let A be the least real number such that-- n

G < paths H,
A

for a binary tree H. Then

lnm A - 0

Thus, we see that if the average embedding is required to work well on

all shortest paths, then the embedding cost goes to zero. In a sense,

then < avg "charges" more heavily than < paths for any bottlenecks.

REFERENCES

[1] P. Erd~s and J. Spencer. Probabilistic Methods in Combinatorics.
Academic Press, 1974.

- [21 F. R. K. Chung and R. L. Graham. On Graphs Which Contain Small
Trees. To appear in JCT.

[3] R. R. K. Chung, R. L. Graham, and N. Pippenger. On Graphs Which
Contain All Small Trees, II. To appear in JCT.

(4] M. Minsky. Semantic Information Processing. MIT Press, 1969.
[5] L. Uhr. Pattern Recognition Learning and Thought. Prentice-Hall,

1973.
(61 R. J. Lipton, S. C. Eisenstat, and R. A. DeMillo. Space and Time

Hierarchies for Classes of Control and Data Structures. JACM 23(4):
720-732, October 1976.

(71 R. A. DeMillo, S. C. Eisenstat, and R. J. Lipton. Preserving
Average Prox mity In Arrays. CACM, Vol. 21(3):228-231, March 1978.

[8] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1976.

[9] D. E. Knuth. An Almost Linear Recurrence. The Fibonacci Quarterly,
Vol. 4(l):117-128, February 1966.

(10] F. Harary. Graph Theory. Addison-Wesley, 1972.
[11] R. Lipton and R. Tarjan. A Planar Separator Theorem. Stanford

Research Report CS-77-627, October 1977.

I

I

61

IUAM J. AFFL MATH 0 I0N So'Iey to lmudlrial aWd Aplid MUs Aml
V . .. L.L April 979 036-1399/791360-.I 101.00/0

A SEPARATOR THEOREM FOR PLANAR GRAPHS*

RICHARD J. LIPTONt AND ROBERT ENDRE TARJAN$

Ababuc. Let G be any n-vertex planar graph. We prove that the vertices of G can be partitioned into
three sets A. B. C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more
than 2n/3 vertices, and C contains no more than 2',24n vertices. We exhibit an algorithm which finds such
a partition A, B C in 0(n) time.

1. Introduction. A useful method for solving many kinds of combinatorial pro-
blems is "divide-and-conquer" [1]. In this method the problem of interest is divided
into two or more smaller problems. The subproblems are solved by applying the
method recursively, and the subproblem solutions are combined to give the solution to
the original problem. Three things are necessary for the success and efficiency of
divide-and-conquer: (i) the subproblems must be of the same type as the original and
independent of each other (in a suitable sense); (ii) the cost of solving the original
problem given the solutions to the subproblems must be small; and (iii) the sub-
problems must be significantly smaller than the original. One way to guarantee that
the subproblems are small is to make them all roughly the same size [11.

We wish to study general conditions under which the divide-and-conquer
approach is useful. Consider problems which are defined on graphs. Let S be a class of
graphs' closed under the subgraph relation (i.e., if Gt r S and G2 is a subgraph of Gr,
then G2 e S). An f(n)-separator theorem for S is a theorem of the following form:

* There exist constants a < 1, P >0 such that if G is any n-vertex graph in S, the
vertices of G can be partitioned into three sets A, B, C such that no edge joins a
vertex in A with a vertex in B, neither A nor B contains more than an vertices, and C
contains no more than 3f(n) vertices.

If such a theorem holds for the class of graphs S, and if the appropriate vertex
partitions A, B, C can be found fast, then a number of problems defined on graphs in
S can be solved efficiently using dividc-and-conquer. For a given graph G in S, the
sets A and B define the subproblems. The cost of combining the subproblem solutions
is a function of the size of C (and thus of f(n)).

Previously known separator theorems include the following:
(A) Any n-vertex binary tree can be separated into two subtrees, each with no

more than 2n/3 vertices, by removing a single edge. For an application of this
theorem, see (131.

(B) Any n-vertex tree can be divided into two parts, each with no more than
2n/3 vertices, by removing a single vertex.

(C) A grid graph is any subgraph of the infinite two-dimensional square'grid
illustrated in Fig. 1. A %In-separator theorem holds for thc class of grid graphs. For an
application, see [5].

Received by the editors August 10. 1977.
t Computer Science Department. Yale University. New Haven, Connecticut 06520. This research wa!

supported in part by the U.S. Army Research Office under Grant DAAG 29-76-G-0338 and The National
Science Foundation under Grant MCS 78-81486.

t Computer Science Department. Stanford University, Stanford, California 94305. This research was
supported in part by National Science Foundation under Grant MCS-75-22S70 and in part by the Office of
Naval Research under Contract N00014-76-C-0688.

'The Appendix cor'ains the graph-theoretic definitions used in this paper.

I

62

RICHARD 3. UPTON AND ROBERT ENDRE TARJAN

*X

all Fir,. 1. Infinite two-dimensional square grid.

T (D) A one-tape Turing machine graph [161 is a graph representing the compu-

I.

tation of a one-tape Turing machine. A p[1]-sepprator theoprm holds for such graphs.
For an application, see [15 1.

One might conjecture that the class of all suitably sparse graphs has an f(n)-
separator theorem for some f(n)=o(n). However, the following result of Erdos
Graham and Szemeridi (41 shows that this is not the case.

THEOREM C. For every E > 0 there is a positive constant c = c(e) such that almost
all2 graphs G with n = (2 + e)k vertices and ck edges have the property that after the

" -omission of any k vertices, a connected component of at least k vertices remains.
Although sparsity by itself is not enough to ive a useful separator theorem.

planarity is. In § 2 of this paper we prove that a n-separator theorem holds for all
planar graphs. In § 3 we provide a linear-time algorithm for finding a vertex partition
satisfying the theorem. This algorithm and the divide-and-conquer approach combine
to give efficient algorithms for a wide range of problems on planar graphs. Section 4
mentions some of these applications, which we shall discuss more fully in a subsequent
paper.

2. Separator theorems. To prove our results we need to use three facts about
planarity.

THEOREM I (Jordan curve theorem (61). Let C be any closed curve in the plane.
Removal of C divides the plane into exactly two connected regions, the "inside" and the
"outside" of C.

dsTHEOREM 2 [7]. Any n-vertex planar graph with n 2- 3 contains no more titan 3n -16
' edges.

By 'almo~ all' we mean that the traction of graphs po$.cssing the property tcnds with increasing n 10

L

ol.

• o l . . d. £.-

63

A SEPARATOR THEOREM

(a) (b)

FIG. 2. Kuwwskia subVps: (a) Ks,(b) K, 3.

THEOREM 3 (Kuratowski's theorem [121). A graph is planar if and only if it
contains neither a complete graph on five vertices (Fig. 2(a)) nor a complete bipartite
graph on two sets of three vertices (Fig. 2(b)) as a generalized subgraph.

From Kuratowski's theorem we can easily obtain the following lemma and its
corollary.

LEMMA 1. Let G be any planar graph. Shrinking any edge of G to a single vertex
preserves planarity.

Proof. Let G* be the shrunken graph, let (xI, x2) be the edge shrunk, and let x be
the vertex corresponding to xI and x2 in G*. If G* is not planar then 0* contains a
Kuratowski graph as a generalized subgraph. But this subgraph corresponds to a
Kuratowski graph which is a generalized subgraph of G. Figure 3 illustrates the

-- possibilities. 0

,X Z 1 X2t X1 Z11 Xg2 X

(a) or or

(b) or

FiO. 3. Suimking an edge t form a Kuaowski gnapA. O'ginal giao musm contain a Kuraewaki graph
as a gSenrmized subgr ph.

COROLLARY 1. Let G be any planar graph. Shrinking any connected subgraph of
G to a single vertex preserves planarity.

Proof. The proof is immediate from Lemma I by induction on the number of
vertices in the subgraph to be shrunk. 0

In some applications it is useful to have a result more general than the kind of
separator theorem described in the Introduction. We shall therefore consider planar
graphs which have nonnegative costs on the vertices. We shall prove that any such
graph can be separated into two parts, each with cost no more than two-thirds of the
total cost, by removing O(%In) vertices. The desired separator theorem is the special
case of equal-cost vertices.

LEMMA 2. Let G be any planar graph with nonnegative vertex costs summing to no
more than one. Suppose G has a spanning tree of radius r. Then the vertices of G can be
partitioned into three sets A, B, C, such that no edge joins a vertex in A with a vertex in
B. neither A nor B has total cost exceeding 2/3, and C contains no more than 2r + 1
vertices, one the root of the tree.

I

64

RICHARD J. LI"TON AND ROBERT ENDRE TARJAN

1 'oof. Assume no vertex has cost exceeding 1/3; otherwise the lemma is true
Embed G in the plane. Make each face a triangle by adding a suitable number of
additional edges. Any nontree edge (including each of the added edges) forms a
simple cycle with some of the tree edges. This cycle is of length at most 2r + 1 if 11
contains the root of the tree, at most 2r - 1 otherwise. The cycle divides the plane (and
the graph) into two parts, the inside and the outside of the cycle. We claim that at least
one such cycle separates the graph so that neither the inside nor the outside contains
vertices whose total cost exceeds 2/3. This proves the lemma.

Proof of claim. Let (x, z) be the nontree edge whose cycle minimizes the maxi-
mum cost either inside or outside the cycle. Break ties by choosing the nontree edge
whose cycle has the smallest number of faces on the same side as the maximum cost. if
ties remain, choose arbitrarily.

Suppose without loss of generality that the graph is embedded so that the cost
inside the (x, z) cycle is at least as great as the cost outside the cycle. If the vertices,
inside the cycle have total cost not exceeding 2/3, the claim is true. Suppose the
vertices inside the cycle have total cost exceeding 2/3. We show by case analysis that
this contradicts the choice of (x, z). Consider the face which has (x, z) as a boundar%
edge and lies inside the cycle. This face is a triangle; let y be its third vertex. The
properties of (x, y) and (y, z) determine which of the following cases applies. Figure 4

4 illustrates the cases.

2) "

yY

VV

?-0

[m!il In i i i ni am ia)" I l b
or

nto 4

65

A SEPARATOR THEOREM

1) Both (x, y) and (y. z) lie on the cycle. Then the face (x, y, z) is the cycle, which
is impossible since vertices lie inside the cycle.

2) One of (x, y) and (y, z) (say (x, y)) lies on the cycle. Then (y. z) is a nontree
edge defining a cycle which contains within it the same vertices as the original cycle
hut one less face. This contradicts the choice of (x, z).

3) Neither (x, y) nor (y, z) lies on the cycle.
a) Both (x, y) and (y, z) are tree edges. This is impossible since the tree itself

contains no cycles.
b) One of (x, y) and (y, z) (say (x, y)) is a tree edge. Then (y, z) is a nontree edge

defining a cycle which contains one less vertex (namely y) within it than the original
cycle. The inside of the (y, z) cycle contains no more cost and one less face than the
inside of the (x, z) cycle. Thus if the cost inside the (y, z) cycle is greater than the cost
outside the cycle, (y, z) would have been chosen in place of (x, z).

On the other hand, suppose the cost inside the (y, z) cycle is no greater than the
cost outside. The cost outside the (y, z) cycle is equal to the cost outside the (x, z)
cycle plus the cost of y. Since both the cost outside the (x, z) cycle and the cost of y are
less than 1/3, the cost outside the (y, z) cycle is less than 2/3, and (y, z) would have
been chosen in place of (x. z).

c) Neither (x, y) nor (y, z) is a tree edge. Then each of (x, y) and (y, z) defines a
cycle, and every vertex inside the (x, z) cycle is either inside the (x, y) cycle, inside the
(y, z) cycle, or on the boundary of both. Of the (x, y) and (y, z) cycles, choose the one
(say (x, y)) which has inside it more total cost. The (x, y) cycle has no more cost and
strictly fewer faces inside it than the (x, z) cycle. Thus if the cost inside the (x, y) cycle
is greater than the cost outside, (x, y) would have been chosen in place of (x, z).

On the other hand, suppose the cost inside the (x, y) cycle is no greater than the
cost outside. Since the inside of the (x, z) cycle has cost exceeding 2/3, the (x, y) cycle
and its inside together have cost exceeding 1/3, and the outside of the (x. y) cycle has
cost less than 2/3. Thus (x, y) would have been chosen in place of (x, z).

Thus all cases are impossible, and the (x, z) cycle satisfies the claim. 0
LEMMA 3. Let G be any n-vertex connected planar graph having nonnegative

vertex costs summing to no more than one. Suppose that the vertices of G are partitioned
into levels according to their.distance from some vertex v, and that Lil) denotes the
number of vertices on level I. If r is the maximum distance of any vertex from v, let r + 1
be an additional level containing no vertices. Given any two levels 11 and 12 such that
levels 0 through 11 - 1 have total cost not exceeding 2/3 and levels 12 + 1 through r + 1
have total cost not exceeding 2/3, it is possible to find a partition A, B, C of the vertices
of G such that no edge joins a vertex in A with a vertex in B, neither A nor B has total
cost exceeding 2/3, and C contains no more than L(11)+ L(12)+max {0, 2(12- 11 - 1)}
vertices.

Proof. If 11 9 lz, let A be all vertices on levels 0 through 1, - 1, B all vertices on
levels 11 + 1 through r, and C all vertices on level I,. Then the lemma is true. Thus
suppose I < 12. Delete the vertices in levels 11 and 12 from G. This separates the
remaining vertices of G into three parts (all of which may be empty): vertices on levels
0 through 11 - 1, vertices on levels I + 1 through 12 - 1, and vertices on levels 12 + 1 and
above. The only part which can have cost exceeding 2/3 is the middle part.

If the middle part does not have cost exceeding 2/3, let A be the most costly part
of the three. let B be the remaining two parts, and let C be the set of vertices on levels
It and 12. Then the lemma is true.

Suppose the middle part has cost exceeding 2/3. Delete all vertices on levels 12

and above and shrink all vertices on levels 11 and below to a single vertex of cost zero.

!I

66

RICHARD J. LIPlON AND ROBERT ENDRE TARJAN

These operations preserve planarity by Corollary 1. The new graph has a spanning
tree of radius 12 - It -1 whose root corresponds to vertices on levels I and below in
the original graph.

Apply Lemma 2 to the new graph. Let A*, B*, C* be the resulting vertex
partition. Let A be the set among A* and B* having greater cost, let C consist of the
vertices on levels 11 and 12 in the original graph plus the vertices in C* minus the root
of the tree, and let B contain the remaining vertices in G. By Lemma 2. A has total
cost not exceeding 2/3. But A U C* has total cost at least 1/3, so B also has total cost
not exceeding 2/3. Furthermore C contains no more than L(11)+ L(12)+ 2(12-I - i)
vertices. Thus the lemma is true. 0

THEOREM 4. Let G be any n-vertex planar graph having nonnegative vertex costs
summing to no more than one. Then the vertices of G can be partitioned into three sets A,
B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B has total
cost exceeding 2/3, and C contains no more than 2/2%1n vertices.

Proof. Assume G is connected. Partition the vertices into levels according to their
distance from some vertex v. Let L(l) be the number of vertices on level 1. If r is the
maximum distance of any vertex from v, define additional levels -1 and r + 1 contain-
ing no vertices.

Let 11 be the level such that the sum of costs in levels 0 through It - 1 is less
than 1/2, but the sum of costs in levels 0 through 11 is at least 1/2. (If no such It exists.
the total cost of all vertices is less than 1/2, and B = C = 0 satisfies the theorem.) Let
k be the number of vertices on levels 0 through I1. Find a level l0 such that 1o It and
IL(Io)J+2(1 1-lo)92k. Find a level 12 such that 1i + 1 12 and IL(12)+2(12 -1 1 - 1)
2 In - k. If two such levels exist, then by Lemma 3 the vertices of G can be partitioned
into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither
A nor C has cost exceeding 2/3, and C contains no more than 2(-/k+ /n/-- k) vertices.
But 2(,,k4+V .J'k) 2(n,'n/27+ 'i)=2,/cvn'. Thus the theorem holds if suitable
levels to and 12 exist.

Suppose a suitable level 1o does not exist. Then; for i 11, L(i)2'fk-2(l,- i).
Since L(O)=1, this means I 2,k-211, and 1+1/2 9,,/k. Thus 1= [i+1/2I]

and
k = _ L(i)- 9 2,1k-2(l1 -i) (4,Fk-2,fk J)(l/'J + 1)/2 i=-k(k'ij +1)>k.

This is a contradiction. A similar contradiction arises if a suitable level 12 does not
exist. This completes the proof for connected graphs.

Now suppose G- is not connected. Let G 1, G2,..., Gk be the connected
components of G, with vertex sets V1, V2,-- •, V,, respectively. If no connected
component has total vertex cost exceeding 1/3, let i be the minimum index such that
the total cost of V, U V 2U ... U V, exceeds 1/3. Let A = VU V2U ... U V,, let
B = VJ1 U V+ 2 U ... U V,, and let C= 0. Since i is minimum and the cost of V,
does not exceed 1/3, the cost of A does'not exceed 2/3. Thus the theorem is
true.

If some connected component (say Gj) has total vertex cost between 1/3 and 2/3.
let A = Vi, B = VU ... U V,- 1 U V, ,U ... U Vk, and C= 0. Then the theorem is
true.

Finally, if some connected component (say G,) has total vertex cost exceeding
2/3, apply the above argument to G,. Let A*, B*, C* be the resulting partition. Let A
be the set among A* and B* with greater cost, let C = C*, and let B be the remaining
vertices of G. Then A and B have cost not exceeding 2/3 and the theorem is true.

.,4

i.

67

A SEPARATOR THEOREM

This proves the theorem for all planar graphs. In all cases the separator C is
either empty or contained in only one connected component of G. 0

COROLLARY 2 (Tn-separator theorem). Let G be any n-vertex planar graph. The
vertices of G can be partitioned into three sets A, B, C such that no edge joins a vertex in
A with a vertex in B neither A nor B contains more than 2n/ 3 vertices, and C contains
no more than 2%/2n vertices.

Poof. Assign to each vertex of G a cost of 1/n. The corollary follows from
Theorem 4. 0

It is natural to ask whether the constant factor of 2/3 in Theorem 1 can be
reduced to 1/2 if the constant factor of 2N/2 is allowed to increase. The answer is yes.

COROLLARY 3. Let G be any n-vertex planar graph having nonnegative vertex
costs summing to no more than one. Then the vertices of G can be partitioned into three
sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B has
total cost exceeding 1/2, and C contains no more than 2,r2Ifn/(1 - 12/) vertices.

Proof. Let G = (V, E) be an n-vertex planar graph. We shall define sequences of
sets (A,), (B,), (C), (D,) such that:

(i) A Bi, C, Di partition V,
(ii) no edge joins A, with Bi, A, with D,, or Bi with D,,
(iii) the cost of Ai is no greater than the cost of Bi and the cost of Bi is no greater

than the cost of A, U C U D,
(iv) 1D, J9 21D,-,1/3.
Let A 0 =Bo= Co= 0, Do= V. Then (i)-(iv) hold. If Ai- 1, B,-, Ci-1 , Di-t have

been defined and Di- $ 0, let G* be the subgraph of G induced by the vertex set
Di-,. Let A*, B*, C* be a vertex partition satisfying Corollary 2 on G*. Without
toss of generality, suppose A* has no more cost than B*. Let Ai be the set among
Ai-tUA*, Bi-, with less cost, let B, be the set among Ai-4 UA*, B,-. with
greater cost, let C = Ci-, U C*, and let , = B*. Then (i), (ii), (iii), and (iv) hold for
A#, Bi, C, Di.

Let k be the largest index for which A,, Bk, C, Dk are defined. Then D, = 0.
Let A = Ak, B = Bk, C = C. By (i), A, B, C partition V. By (ii), no edge joins a vertex
in A with a vertex in B. By (iii), neither A nor B has cost exceeding 1/2. By (iv), the
total number of vertices in C is bounded by

S2,/2,_n(2/3),/2 = 2 _3 .

Another natural question is whether graphs which are "almost" planar have a
/%n-separator theorem. The finite element method of numerical analysis gives rise to
one interesting class of almost-planar graphs. We shall extend Theorem 4 to apply to
such graphs.

A finite element graph is any graph formed from a planar embedding of a planar
graph by adding all possible diagonals to each face.'(The finite element graph has a
clique corresponding to each face of the embedded planar graph.) The embedded
planar graph is called the skeleton of the finite element graph and each of its faces i an
element of the finite element graph.

THEOREM 5. Let G be an n-vertex finite element graph with nonnegative vertex
costs summing to no more than one. Suppose no element of G has more than k boundary
vertices. Then the vertices of G can be partitioned into three sets A, B, C such that no
edge joins a vertex in A with a vertex in B, neither A nor B has total cost exceeding 2/3,
and C contains no more than 4 [k/2J %In vertices.

68

RICHARD J. UPTON AND ROBERT ENDRE TARJAN

Proof. Let G* be the skeleton of 0. Form G** from G* by inserting one newi 'vertex into each face of G* containing four or more vertices and connecting the new
vertex to each vertex on the boundary of the face. Then G** is planar. Apply
Theorem 4 to G**. Let A**, B**, C** be the resulting vertex partition. This partition
satisfies the theorem except that certain edges in G but not in G** may join A** and
B**. These edges are diagonals of certain faces of G*; call these bad faces. Each bad
face must contain one of the new vertices added to G* to form G**, and this vertex
must be in C**.

Form 0 from C** by deleting all new vertices and adding to G**. for each bad
face, either the set of vertices in A** on the boundary of the bad face, or the set of
vertices in B** on the boundary of the bad face, whichever is smaller. Let A be the
remaining old vertices in A** and let B** be the remaining old vertices in B**. Then
no edge in G joins A and B, neither A nor B contains more than 2n/3 vertices, and C
contains no more than 2%/2 Lk/21 v'n + a vertices, where a is the number of faces of G*
containing four or more vertices. By use of Euler's theorem, it is not hard to show that
the number of faces of G* containing four or more vertices is at most n -2. Thus
IClS [k/2J v, and the theorem is true. 0

COROLLARY 4. Let 0 be any n -vertex finite element graph. Suppose no element of
G has more' than k boundary vertices. The vertices of G can be partitioned into three sets
A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains
more than 2n/3 vertices and C contains no more than 4 [k/2] vn vertices.

The last result of this section shows that Theorem 4 and its corollaries are tight to
within a constant factor; that is, if f(n) = o(.in), no f(n)-separator theorem holds for
planar graphs.

THEOREM 6. For any k, let G = (V, E) be a k x k square grid graph (a k x k square
section of the infinite grid graph in Fig. 1). Let A be any subset of V such that
an r IA[I n/2, where n = k2 and a is a positive constant less than 1/2. The the number
of vertices in V-A adjacent to some vertex in A is at least k - min (1/2, -a).

Proof. Without loss of generality, suppose that the number r of rows of G which
contain vertices in A is no less than the number c of columns of G which contain
vertices in A. Then an S 1Al < rc <r2 and r => ,ak.

If r* is the number of rows of G which contain only vertices in A, then kr* 9 Al 1<
n/2, and r* S k/2. Let S - (x E V: x is adjacent to a vertex of A). If r* = 0, then
ISIrg lak. If r* 0, then r= k and JS19r-r* = k -r*-_kl2. 0

It is an open problem to determine the smallest constant factor which can replace
2%/2 in Theorem 4.

3. An algorithm for finding a good partition. The proof of Theorem 4 leads to an
algorithm for finding a vertex partition satisfying the theorem. To make this algorithm
efficient, we need a good representation of a planar embedding of a graph. For this
purpose we use a list structure whose elements correspond to the edges of the graph.
Stored with each edge are its endpoints and four pointers, designating the edges
immediately clockwise and counter-clockwise around'each of the endpoints of the
edge. Stored with each vertex is some incident edge. Figure 5 gives an example of such
a data structure.

PARTITIONING ALGORITHM.
Step 1. Find a planar embedding of G and construct a representation for it of the

kind described above.

Time: 0(n), using the al, I of [101.

69
A SEPARATOR THEOREM

4

32

Vertex Ji~en.es Edgs and neighbors

C1 act C2 CC2

e. 2 el e . , ,

.. -1.- 1- 1 3 ! ., 1, I . , I
32Z 41 e2 I e , Le-

4 Ea , 2 3 1s e I ' 1 I1

Cs 2 4 el £2 e. Cjl-

e- 3 4 e. e~ e~C

FIG. 5. Representation of an embedded planar graph. (c = clockwise, cc - counter-clockwise.)

Step 2. Find the connected components of G and determine the cost of each one.
If none has cost exceeding 2/3, construct the partition as described in the proof of
Theorem 4. If some component has cost exceeding 2/3, go to Step 3.

lime: 0(n) [9].

Step 3. Find a breadth-first spanning tree of the most costly component. Compute
the level of each vertex and the number of vertices L(i) in each level 1.

Time: 0(n).
Step 4. Find the level It. such that the total cost of levels 0 through 11 - I does not

exceed 1/2, but the total cost of levels 0 through 1, does exceed 1/2. Let k be the
number of vertices in levels 0 through 11.

Time: 0(n).

Step 5. Find the highest level 10911 such that L(Io)+2(I,- 1,)-!24k. Fi:,d the
lowest level 12i 1,+ 1 such that L(1 2)+2(12 -i1-1) 2,n -k.

Time: 0(n).
Step 6. Delete all vertices on level 12 and above. Construct a new vertex.x to

represent all vertices on levels 0 through It,. Construct a Boolean table with one entry
per vertex. Initialize to true the entry for each vertex on levels 0 through I and

70

RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

4 S

6

(c)

4 5

FIG. 6. Shrinking a subtree of a planar graph.
(a) Original graph. Subtree denoted by w .

(b) Edges scanned around subree. Those foraing loops and multiple edges in shrunken graph
are crossed out.

(c) Suhnnken graph. Vertex 0 replaces subree.

initialize to false the entry for each vertex on levels 10+ 1 through 12-1. The vertices
on levels 0 through 10 correspond to a subtree of the breadth-first spanning tree
generated in Step 3. Scan the edges incident to this tree clockwise around the tree.
When scanning an edge (v, w) with v in the tree, check the table entry for w. If it is
rue, delete edge (v, w). If it is false, change it to true, construct an edge (z, w), and
delete edge (v, w). The result of this step is a planar representation of the shrunken
graph to which Lemma 2 is to be applied. See Fig. 6.

Time: 0(n).

Step 7. Construct a breadth-first spanning tree rooted at x in the new graph. (This
can be done be modifying the breadth-first spanning tree constructed in Step 3.)
Record, for each vertex v, the parent of v in the tree, and the total cost of all
descendants of v including v itself. Make all faces of the new graph into triangles by
scanning the boundary of each face and adding (nontree) edges as necessary.

Time: 0(n).

Step 8. Choose any nontree edge (vi, wt). Locate the corresponding cycle by
following parent pointers from v, and wt. Compute the cost on each side of this cycle
by scanning the tree edges incident on either side of the cycle and summing their
associated costs. If (v, w) is a tree edge with v on the cycle and w not on the cycle, the
cost associated with (v, w) is the descendant cost of w if v is the parent of w. and the
cost of all vertices minus the descendant cost of v if w is the parent of v. Determine
which side of the cycle has greater cost and call it the "inside". See Fig. 7.

Time: 0(n).

7i

A S.PARATOR THEOREM

.0

.06

6 .08 .02

.08

04L

FiG. 7. Cycle constructed in Step 8. A(I vertices have cost .02. Numbers om ventces are descendant cost.

The total cost inside the cycle is .48. outside the cycle is .34. and on the cycle is .18.

Step 9. Let (vi, wi) be the nontree edge whose cycle is the current candidate to
complete the separator. If the cost inside the cycle exceeds 2/3, find a better cycle by
the following method.

Locate the triangle (vi, y, w,) which has (vi, w1) as a boundary edge and lies inside
the (vi. wj) cycle. If either (v,, y)or (y, w,) is a tree edge, let (v., , w. 1) be the nontree
edge among (vi, y) and (y, w,). Compute the cost inside the (vi. , w, 1) cycle from the
cost inside the (vi, wj) cycle and the cost of v.. y. and w,. See Fig. 4.

If neither (vi, y) nor (y, wj) is a tree edge, determine the tree path from y to the
(v,, wj) cycle by following parent pointers from y. Let z be the vertex on the (v, w.)
cycle reached during this search. Compute the total cost of all vertices except z on this
tree path. Scan the tree edges inside the (y, wj) cycle, alternately scanning an edge in
one cycle and an edge in the other cycle. Stop scanning when all edges inside one of
the cycles have been scanned. Compute the cost inside this cycle by summing the
associated costs of all scanned edges. Use this cost, the cost inside the (vi, w) cycle,

and the cost on the tree path from y to z to compute the cost inside the other cycle.
Let (vi, , w4,1) be the edge among (vi. y) and (y, w,) whose cycle has more cost inside
it.

Repeat Step 9 until finding a cycle whose inside has cost not exceeding 2/3.

Time: 0(n) (see proof below).

Step 10. Use the cycle found in Step 9 and the levels found in Step 4 to construct a
satisfactory vertex partition as described in the proof of Lemma 3. Extend this
partition from the connected component chosen in Step 2 to the entire graph as
described in the proof of Theorem 4.

lIme: 0(n).

This completes our presentation of the algorithm. All steps except Step 9
obviously run in 0(n) time. We urge readers to fill in the details of this algorithm; we
content ourselves here with proving that Step 9 requires 0(n) time.

Proof of Step 9 time bound. Each iteration of Step 9 deletes at least one face from
the inside of the current cycle. Thus Step 9 terminates after 0(n) iterations. The total

L

72

RICHARD J. LIPTON AND ROBERT ENDRE TARJAN

running time of one iteration of Step 9 is 0(l) plus time proportional to the length of
the tree path from y to z plus time proportional to the number of edges scanned inside
the (vi, y) and (y, wJ) cycles. Each vertex on the tree path from y to z (except z) is
inside the current cycle but on the boundary or outside of all subsequent cycles. For
every two edges scanned during an iteration of Step 9, at least one edge is inside the
current cycle but outside all subsequent cycles. It follows that the total time spent
traversing tree paths and scanning edges, during all iterations of Step 9, is 0(n). Thus
the total time spent in Step 9 is 0(n). 0

By making minor modifications to this algorithm, one can construct an 0(n) time
algorithm to find a vertex partition satisfying Theorem 5, and 0(n) time algorithms to
find vertex partitions satisfying Corollary 2 and Corollary 4.

4. Applications. The separator theorem proved in § 2 allows us to obtain many
new complexity results since it opens the way for efficient application of divide-and-
conquer on planar graphs. We mention a few such applications here; we shall present
the details in a subsequent paper.

- Generalized nested dissection. Any system of linear equations whose sparsity
structure corresponds to a planar or finite element graph can be solved in 0(n 3 2) time
and O(n log n) space. This result generalizes the nested dissection method of George.. 151.

Pebbling. Any n-vertex planar acyclic directed graph with maximum in-degree k
can be pebbled using 0(V/n + k log n) pebbles. See [81, [161 for a description of the
pebble game.

&The qost office problem. Knuth's "post office" problem I111 can be solved in
O(0og n))time and 0(n) space. See [3], [17] for previous results.

Data structure embedding problems Any planar data structure can be efficiently
embedded into a balanced binary tree. See [21, [14] for a description of the problem
and some related results.

Lower bounds on Boolean circuits. Any planar circuit for computing Boolean
convolution contains at least cn2 gates for some positive constant c.

Appendix. Graph-theoretic definitions. A graph G = (V, E) consists of a set V of
vertices and a set E of edges. Each edge is an unordered pair (v, w) of distinct vertices.
If (v, w) is an edge, v and w are adjacent and (v, w) is incident to both v and w. A path
of length k with endpoints v, w is a sequence of vertices v = Vo, v 1 , V2,. * •, v& = w such
that (v-I, vi) is an edge for 1 i k. If all the vertices vo, vi,. - •, vk- 1 are distinct, the
path is simple. If v = w, the path is a cycle. The distance from v to w is the length of the
shortest path from v to w. (The distance is infinite if v and w are not joined by a path.)
The level of a vertex v in a graph G with respect to a fixed root r is the distance from r
to V.

If G, = (V, E2) and G2 = (V2. E 2) are graphs, Gt is a subgraph of G2 if V, r V2
and E, C E2 . 0, is a generalized subgraph of 02 if V, V2 and there is a mapping f
from E, into the set of paths of G2 such that, for each edge (v, w)eEl, f((v. w)) has
endpoints v and w, and no two paths f((vt, w)) and ((v2 , w2)) share a vertex except
possibly an endpoint of both paths. If G = (VI, E1) is a graph and V, % V2, the graph

, - (V. E) where E, = E2 f{(v, w)iv, w e VI) is the subgraph of G2 induced by the
vertex set V1. If G, = (VI, E1) is a subgraph of G2 = (V2, E2), then shrinking G, to a
single vertex in G2 means forming a new graph G2 from G2 by deleting from G2 all
vertices in V, and all their incident edges, adding a new vertex x to G2, and adding a
new edge (x. w) to G2 for each edge (v, w)e E2 such that v e V, and wit V1.

A graph is connected if any two vertices in it are joined by a path. The connected
components of a graph are its maximal connected subgraphs. A clique is a graph such

-is I

rM

73

ASEPARATOR THEOREM

that any two veuices are joined by an edge. A tree is a connected graph containing no0
cycles. We shall generally assume that a tree has a distinguished vertex, called a root. If
T is a tree with root r and v is on the (unique) simple path from r to w, v is an ancestor
or w and w is a descendant of v. If in addition (v. w) is an edge of T' then v is the
parent of w and w is a child of v. Ile radius of a tree is the maximum distance of any
vertex from the root. A spanning tree T of a graph G is a subgraph of G which is a tree
and which contains all the vertices of G. T' is a breadth -first spanning tree with respect
to a root r if, for any vertex v. the distance from r to v in T is equal to the distance
from r to v in 0.

A graph G = (V, E) is planar if there is a one-to-one map f, from v into points in
the plane and a map f2 from E into simple curves in the plane such that, for each edge
(v, w) eE f2((v. w)) hag endpoints f, (v) and f2(w), and no two curves f 2((v 1, w 1)),
fAv 2, w2)) share a point except possibly a common endpoint. Such a pair of maps fl,
f2 is a planar embedding of G. The connected planar regions formed when the ranges

* of f, and f2 are deleted from the plane are called the faces of the embedding. Each
face is bounded by a curve corresponding to a cycle of G, called the boundary of the
face. We shall sometimes not distinguish between a face and its boundary. A diagonal
of a face is an edge (v, w) such that v and w are nonadjacent vertices on the boundary
of the face.

Acknwledgmnmts. We would like to thank Stanley Eisenstat, Rich A. DeMillo,
Robert Floyd, Donald Rose, and Daniel Sleator for many helpful discussions and much
thoughtful criticism.

REFERENCES

i ll A. V. AHO.J. E. HOPCROvr AND J. D. ULLMAN. ?he Desi gn and Analysis of Computer Algoruth ms,
Addison-Wesley. Reading. MA, 1974.

(21 R. A. DEMILLO. S. C. EISENSTAT AND R. J. LIPTON, Preserving average proximity in arrays.
Georgia Institute of Tech., Tech. Rep., Atlanta, 1976.

131 D. DOSKIN AND R. J. LIPTON. Mulgi-dimnensional searching problems, SIAM J1. Comput., 5 (1976),
pp. 181-186.

141 P. ERDOs. R. L. GRAHAM AND E. SZEMERtkDI, CO, sparse graphs with dense long paths, STAN-CS-
75-504, Computer Sci. Dept., Stanford Univ.. Stanford, CA. 1975.

151 J. A. GEoRoE. Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10 (1973),
pp. 343-367.

161 D. W. HALL AND 0. SPENCER, Elementary Topology. John Wiley, New York, 1955.
171 F. HARARY, Graph Theory, Addison-Wesley, Reading. MA, 1969.
IS] J. HoCROFr. W. PAUL AND L. VALIANT. On tinme versus space. J. Assoc. Comput. Mach., 24

(1977), pp. 332-337.
191 J. E. HoI'CROFT AND R: E. TAIUAN, Efficient algorithms for graph manipulation, Comm. ACM. 16

(1973), pp. 372-378.
1101 - Efficient planarity testing, J. Assoc. Comput. Mach.. 21 (1974), pp. 549-568.
1111 D. E. KNUTH. The Artof Computer Programming. Volume 3: Sorting and Searching Addison-Wesley.

Reading. MA. 1973.
1121 C. KURATOWSKI. Sur le problime des corbes gauches en tepologee. Fund. Math.. 15 (1930h, pp.

271-283.
1131 P.Mh. LEwts. R. E. STEARNS AND J. HARTMANIS, Memory bounds for recognition of context-fre and

contest-sensitive languages. IEEE Conference on Switching Theory and Logical Design. IEEE.
New York. 1965. pp. 191-202.

1141 R. J. LIPTON. S.C. EBSENSTAT AND R. A. DEMILLo. Space and time hierarchies far classes of control
stnectures and data structures, J. Assoc. Comput. Mach.. 23 (1976). pp. 710-732.

1151 M. S. PATERSON. Tape bounds for time -bounded Turing machines. J. Contput. System Sci.. 6 (1972k,
pp. 116-124.

1161 W. J. PAUL, R. E. TARJAN AND J. R. CELONI, Space bounds for a game on graphs, Math&. Systems
Theory, 10 (1977),pp. 239-25 1.

117 Ml . J. SHAMoS. Problens in computational geometry, unpublished manuscript.

T1 ,S ,77T T1 ?'!?T ')LTTTY PRACTI CA3_

SICNIF-. I" ' 1CH DO NM?

APPLICATIONS OF A PLANAR SEPARATOR 7HEORD4

Richard J. Lipton!
/ Robert Endre Tarjan

*

Computer Science Department Computer Science Department
Yale University Stanford University
New Haven, Connecticut 06520 Stanford, California 94305

August 1977

Abstract. efficient approximation algorithm for finding maximum

Any n-vertex planar graph has the property that independent sets in planar graphs to lower bounds on
it can be divided into components of roughly equal size the complexity of planar Boolean circuits. The last

by removing only O(N) vertices. This separator section mentions two additional applications whose

theorem, in combination with a divide-and-conquer description is too lengthy to be included in this

strategy, leads to many new complexity results for paper.

planar graph problems. This paper describes some of
these results.

2. Approximation Algorithms for NP-Complete Problems.

Divide-and-conquer in combination with Theorem 1
Keywords: algorithm, Boolean circuit complexity, can be used to rapidly find good approximate solutions

divide-and-conquer, geometric complexity, to certain NP-complete problems on planar graphs. As
graph embedding, lower bounds, maxiTum an example we consider the maximum independent set

* independent set, non-serial dynamic problem, which asks for a maximum number of pairwise
programming, pebbling, planar graphs, non-adjacent vertices in a planar graph.

7- separator, space-time tradeoffs.

Theorem 2. Let G be an n-vertex planar graph with
non-negative vertex costs sunning to no more than one
and let 0 < E < 1 . Then there is some set C of

1. Introduction. O(q-n7) ve-rtices whose removal leaves G with no

One efficient approach to solving computational connected coponent of cost exceeding c . Further-

problems is "divide-and-conquer" [1]. In this method, more the set C can be found in O(n log n) time.

the original problem is divided into two or more
smaller problems. The subproblems are solved by Proof. Apply the following algorithm to G

"" applying the method recursively, and the solutions to
the subproblems are combined to give the solution to nitialization: Let C =

the original problem. Divide-and-conquer is especially General Step: Find some connected component K in
efficient when the subproblems are substantially G minus C with cost exceeding c . Apply
smaller than the original problem. Corollary 1 to K , producing a partition

In [lh] the following theorem is proved. A 1 , , C1 of its vertices. Let C . CUC," If one of A1 and B1 (say A1) has cost

Theorem 1. Let G be any n-vertex planar graph with

non-negative vertex costs suming to no more than one. exceeding two-thirds the cost of K , apply

Then the vertices of G can be partitioned into three Theorem I to the subgraph of G induced by the

sets A, B, C , such that no edge joins a vertex in A vertex set A1 , producing a partition A2 , B2
with a vertex in B , neither A nor B has total C2 of A, . Let C . CUC 2
vertex.c stexceeding 2/3 , and C contains no more
than 2424n vertices. Furthermore A, B, C can be Repeat the general step until G minus C has
found in O(n) time. no component with cost exceeding c .

In the special case of equal-cost vertices, this The effect of one execution of the general step
theorem becomes is to divide the component K into smaller components,

each with no more than two-thirds the cost of K and
Corollary 1. Let G be any n-vertex planar graph, each with no more than two-thirds as many vertices
The vertices of G can be partitioned into three sets as K . Consider all components which arise during
A, B, C , such that no edge joins a vertex in A with the course of the algorithm. Assign a level to each
a vertex in B , neither A nor B contains more component as follows. If the component exists when
thgP,2n/3 vertices, and C contains no more than the algorithm halts, the component has level zero.
2-J24n vertices. Otherwise the level of the component is one greater

than the maximum level of the components formed when
Theorem 1 and its corollary open the way for it is split by the general step. With this definition,

efficient application of divide-and-conquer to a any two components on the same level are vertex-
variety of problems on planar graphs. In this paper disjoint.
we explore a number of such applications. Each
section of the paper describes a different use of Each level one component has cost greater than e,

divide-and-conquer. The results range from an since it is eventually split by the general step. It

This research partially supported by the U. S. Army Research Office, Grant No. DAAG 29-76-G-O338.

This research partially supported by National Science Foundation grant MCS-75-22870 and by the Office of
Naval Research contract N00014-76-C-o688.

$ N Reproduction in whole or in part is permitted for any purpose of the United States government.

v-,

,THIS ,'!r,'tT IS rr7T nITALITY PRACTICAMAN
TH. C"',Py,-."T-+ T 2 .T,+; 1.Mi~-IEj A 757

SIGN!YIC CNT " - OF PAGES WHICH DO NOT
REK'ROD'.CRZ LFT, ' fUlY.

follows that, for I 2 1 , each level I component time required by Step 2 is thus

bag cost at leasnt (3/2)'-'. and contains at leasnt (1
1 0(max(l ni E n 1 .n and

(3/2) vertices. Since the total cost of G is at 1 1

most one, the total number of components of level i

Ie at most (2/3)1 /C 0 i< -log log n

The total running time of the algorithm is (0r -ln (log log n)2l"9 log 0 (n log n)
SO(E lKI I K is a component split by the general 0 D),,

step]) . Since a component of level i contains at Hence the entire algorithm requires 0(n log n) time.

least (3/2)1 vertices, the maxim= level k must

satisfy (3 /2)k < n , or k < log3/2 n . Since 3. Nonserial Dynamic Programing.

components in each level are vertex-disjoint, the
total running time of the algorithm is Many NP-complete problems, such as the maximum
O(n log/2 n) . O(n log n) independent set problem, the graph coloring problem,

and others, can be formulated as non-serial dynamic
The total size of the set C produced by the programming problems [2,20]. Such a problem is of

algorithm is bounded by the following form: minimize the objective function
f(xl,...,xn) , where f is given as a sum of terms

O(E (FIF I K is a component split by the general fk(.) , each of which is a function of only a subset

step)) of the variables. We shall assme that all variables

Llo 2 nj L (2/3)t.1/C J xi take on values from the same finite set S, and

< Oa .. lii / that the values of the terms fk(.) are given by(tables. Associated with such an objective function f
is an interaction graph G - (VE) , containing one

L (2/3 '1/1J vertex vi for each variable x, in f , and an

I n < n and n > O) edge Joining xi and xj for any two variables x.
J=1 and xj which appear in a con term fk()

i 1 By trying all possible values of the variables,
0 j (2/3)'"1 n: a nonserial dynamic programming problem can be solved

in 2(n) tine. We shall show that if the inter-
action graph of the problem is planar, the problem

0 %n/7 (2/3)/2 - 0(477) can be solved in 2 time. This means that

1i 0 substantial savings are possible when solving typical
NP-complete problems restricted to planar graphs.
Note that if the interaction graph of f is planar,

The following algorithm uses Theorem 2 to find an no term (of f can contain more than four
approximately maxlmum independent set I in a planar variables, since the complete graph on five vertices
graph G - (VE) . is not planar.

sepj. Apply Theorem 2 to G with In order to describe the algorithm, we need one
e- (log log n)/n and each vertex having additional concept. The restriction of an objective
cost 1/n to find a set of vertices C ta

function f = fk to a set of variables

containing 0(n/ jlog log n) vertices whose k- 1
removal leaves no connected component with X, ... xi is the objective function
more than log log n vertices. j

Step2. In each connected component of G minus C , [f I fk depends upon one or more of xl,...,xi .find a -axion independent set by checking k k

every subset of vertices for independence.
Form I as a union of maximm independent Given an objective function f(xl, ... ,xn) -
sets, one from each component. I

E f and a subset S of the variables xl,... xn
Let I* be a maximu independent set of G . The k.1 k

restriction of I- to one of the connected components which are constrained to have specific values, the
formed ien C is removed from G can be no larger
then the restriction of I to the same component. following algoritnm solves the problem: maximize f

subject to the constraints on the variables in S
Thus 111 - 111 . (n/og log n) . Since G is in the presentation, we do not distinguish between

planar, 0 is four-colorable, and I*i1 > n/4 . the variables x1, ... O, and the correponding

Thus (1i1*-ll)/ - 0(i/ /Io Io n) , and the vertices in the interaction graph.

relative error in the size of I tends to zero with ate1. If n < 9 , solve the problem by exhaustively
Increasing n . tryin-all possible assigments to the

Step 1 of the algorthm requires O(n log n) unconstrained variables. Otherwise, go to

time by Theorem 2. Step 2 requires O(n± 2) time Step 2.

on a connected oomonent of ni vertices. The total

1i.

' ' . .. F.G.S ?.',i D NOT 76

t 2. ply Corollary 1 to the interaction gaph2 pebbling proce . If n < zm, where
0 of f . Let A,BsC be the resulting 2
vertex partition. Let fl be the restric- no - (a/(1-3)) , pebble all Vertices of G without

tian of f to AUC and let f2 be the deleting pebbles. If n > no , find a vertex

restriction of f to BU C . For each partition A, B, C satisfying Corollary 1. Pebble

possible ssignment of values to the the vertices of G in topological order.! To pebble
variables in C-S , perform the following a vertex v , delete all pebbles except those an C
steps: For each predecessor u of v , let G(u) be the
(a) M ze f1 with the given values for subgraph of G induced by the set of vertices with

pebble-free paths to u . Apply the method recursively
the variables in CU S by applying the to each G(u) to pebble all predecessors of v
method recurs'vely; leaving a pebble on each such predecessor. Then

(b) IMimize f2 with the given values for pebble v .

the variables in CuS by applying the If p(n) is the maximum number of pebbles
method recursively; required by this method on any n-vertex graph, then

(c) Combine the solutions to (a) and (b) to p(n) - n if n < no
obtain a ma am value of f with the
given values for the variables in CUS. p(n) <a4n + k + p(n/3 + ctn) if n > no

Choose the assigment of values to variables
in C-S which maximizes f and return the An Lnductive proof shows that p(n) is
appropriate value of f as the solution. 0(4nr + k lo n) . 03

The correctness of this algorithm is o-bvious. if It is also possible to obtain a substantial
n .- 9 , the algorith0 solves at most O(,4n) u reduction in pebbles while preserving a polynomial
prolsn 9 te gorithm soe s tmost 02 s bound on the number of pebbling steps, as the
problems in Step 2, since C is of O(Vf) size, following theorem shows.
Each subp lam contains at most
2n/3 + 2 2 n < 29n/30 variables. Thus if t(n) is Theorem 4. Any n-vertex planar acyclic directed
the running time of the gorithm, we have graph with maximum in-degree k can be pebbled using

t(n) 0 O(n log n) + 20(n) . t(29n/30) if n > 9 O(n'
/

3 + k) pebbles in O(kn
5 /

3) time.

t(n) 0(i) if n < 9 . An inductive proof shows O(n2/3)-- Proof. Let C be a set of 0n)vertices whose

that t(n) < 20(% . remova3 leaves G with no weakly connected

component containing more than n2
/ 3

vertices.
Such a set C exists by Theorem 2. The following

4. Pebbni. pebbling procedure places pebbles permanently on the
vertices of C . Pebble the vertices of G in

The following one-person game arises in register topological order. To pebble a vertex v , pebble
allocation problems (21), the conversion of recursion each predecessor u of v and then pebble v . To

* .to iteration [161, and the stud4 of time-space trade- pebble a predecessor u , delete all pebbles from G
offs 14,l0,181. Let G - (VE) be a directed acyclic except those on vertices in C or on predecessors
graph with maximum in-degree k . If (v,w) is an of v . Find the weakly connected component in G
edge of G , v is a predecessor of w and w is a minus C containing u . Pebble all vertices in
successor of v . The game involves placing pebbles this component, in topological order.
on the vertices of G according to certain rules.
A given step of the game consists of either placing a The total number of pebbles required by this

pebble on an empty vertex of G (called pebbling the strategy is O(n 2/ 3) to pebble vertices in C plus
vertex) or removing a pebble from a previously pebbled 2/3
vertex. A vertex may be pebbled ony if all its n to pebble each weakly connected coonent plus

predecessors have pebbles. The object of the game is k to pebble predecessors of the vertex v to be

to successively pebble each vertex of G (in wn pebbled. The total number of pebbling steps is at
order) subject to the constraint that at most a given most O(kn - O(kn 5/) . C
number of pebbles are ever on the graph simultaneously.

It is easy to pebble any vertex of an n-vertex
graph in n steps using n pebbles. We are 5. Lower Bounds on Boolean Circuit Size.
interested in pebbling methods which use fewer than n
pebbles but possibly many more than n steps. It is A Boolean circuit is an acyclic directed graph
kiown that any vertex of an n-vertex graph can be such that each vertex has in-degree zero or two, the
pebbled with O(n/log n) pebbles [10] (where the predecessors of each vertex are ordered, and
constant depends upon the maximum in-degree), and that corresponding to each vertex v of in-degree two is
in general no better bound is possible (18]_ We shall a binary Boolean operation bv . With each vertex of
show that if the graph is planar, only O(n) pebbles the circuit we associate a Boolean function which the
are necessary, generalizing a result of 118]. An vertex comutes, defined s follows. With each of
example of Cook (4] shows that no better bound is vert ces defin ds flos it c
possible for planar graphs, the k vertices vi of in-degree aero (inpeta)

Theor . Any n-vertex planar acyclic directed That is, in an order such that If v is a
gr&- with maximum in-degree k can be pebbled using predecessor of w , v is pebbled before w
O(%E + k log2 n) pebbles. A nnectedc ant of a directed graph

Proof. Let a - 2- and 0 - 2/3 . Let G be the is a cmntea I of the undirected graph
graph to be pebbled. Use the following recursive formed by ignoring edge directions.

77

we associate a variable xi and an identity function Theorem 6. Let G be & planar acyclic directed

1' (xJ x I . With each vertex w of indegree two grph with the shiftin property. Then G otains

V, at least Lm/2J 2/162 vertices.
having predecessors u, v we associate the function
fw . bw(fu'fv) . The circuit camputes the set of Proof. Suppose that G contains n vertices.
functions associated with its vertices of out-degree Assi i a cost of 1/m to each of the first Lm/2j
zero (outputs). inputs and to each of the last Lm/2j outputs

of G , and a cost of zero to every other vertex

We are interested in obtaining lower bounds on of G Call the first L'2J inputs and the last

the size (number of vertices) of Boolean circuits Lm/2j outputs of G costly. Let A, B, C be a
which cmpute certain ccumon and important functions, vertex partition satisfying Theorem 1 on G
Using Theorem I we can obtain such lower bounds (ignoring edge directions).

under the assumption that the circuits are planar. Without loss of generality, suppose that A is
Any circuit can be converted into a planar circuit by no hore c os of Bnd that A s
the following steps. First, embed the circuit in the n cre costly then B , end that A contains no
plane, aloing edges to cross if necessary. Next, more costly outputs than costly inputs. Let A' be

replace each pair of crossing edges by the cr r the set of costly inputs in A , B' the set ofreplce achpai ofcrosln edes y te cossver costly outputs in B , p the nmber of costly

circuit illustrated in Figure 1. It follows that any cos an outputs in B , p t te of o
lower bound on the size of planar circuits is also a inputs and outputs in C , And q the nber of
lover bound on the total number of vertices and edge cly inp a t in A p .Hen
crossings in any planar representation of a non-planar 2Lm/2J/3 "

<
q

<
Lm/2J " p/2 . Hence

circuit. In a technology for which the total naier JA' > q/2 > LM/2J/3 - p/2 . Also
of vertices and edge crossings is a reasonable measure
of cost, our lower bounds imply that it may be JA ' 2: JA I-(Lm/2j p (q- JA'1))
expensive to realize certain coonly used functions
in hardware. c 1/2 (Lm/2J -p - q/2)

A superconcentrator is an acyclic directed graph
with m inputs and m outputs such that any set of > (Lm/2j/3 - p/2)(Lm/2J - p -

"- k inputs and any set of k outputs are joined by k
vertex-disjoint paths, for all k in the range L m/2J/3 + p/2)

.. l<k<m.
= (Lml/.Jl3 - pI2)C2L/2.JI3 - p!2)

Theorem 5. Any m-input, st-output planar supercon- 2

centrator contains at least m2/72 vertices. > 2Lm/2j 2/q - PLm/2J/2

Proof. Let G be an a-input, m-output planar For v i EA' , w cB' , and i inthe range
superconcentrator. Assign to each input and output 1

of G a cost of 1/(2m) , and to every other vertex 1 < I < Lm/2j , call v i , i, i a match if

a cost of zero. Let A, B, C be a vertex partition J-i . i . For every v i A' and wj B' there is
satisfying Theorem I on G (ignoring edge directions). e
Suppose C contains p inputs and outputs. Without eatly one value of ! which produces a match; hence
loss of generality, suppose that A is no more costly the total number of matches for all possible vi , wi,

than B , and that A contains no more outputs than 2
inputs. A contains between 2/3 - p and m - p/2 f is IA' I.B'I > 2Lm/2 /q- pLm/2j/2 . Since

inputs and outputs. Hence A contains at least there are only Lm/2J values of I , some value of
m/3 - p/2 inputs and at most m/2 - p/4 outputs.
B contains at least m-p- (m/2 - p/4) - m/2 - 3p/4 I produces at least 2L/2j/q - p/2 uatches. Thus,

outputs. Let k- mintrm/3 - p/21, rm/2 - 3p/41} . for k. 2Lm/2j/q - p/2 , there is some value of I
Since G is a superconcentrator, any set of k vi, vi ,...,Vi

inputs in A and any set of k outputs in B are add 1me set of k inputs A" . k 2 .
joined by k vertex-disjoint paths. Each such path
must contain a vertex in C which is neither an A' such that B" .= iwi+,wi +,...,Wik+] C B'
in Lnor an output. Thus
2%r2-n - p ? minm/3 - p/2, m/2 - 3p/4) > m/3 - p , Since G has the shifting property, there must be k

ant n > m/72. D vertex-disjoint paths between A" and B" . But each
such path must contain a vertex of C which is

The property of being a superconcentrator is a neither an input nor an output. Hence

little too strong to be useful in deriving lower 2%2n - p > 2L /2j/q - p/2 , and
bounds on the camplexity of interesting functions. > Lm/2J2/162
However, there are weaker properties which still n A si /162 . i

reur ~ 2)
etcs e VE e A shifting circuit is a Boolean circuit with m

require n(s?) vertices. tet Ga- (V,E) be an primary inputs x1 ,x 2 o,xm # zero or more auxiliary
acyclic directed graph with m nuabered inputs

Vl, V2,...,V aand m numbered outputs wlw 2 , ... ,w . inputs, and m outputs zl,z 2 ,...,s m , such that, for

O is said to have the hiftin property if, for any any k in the range 0 < k < m , there is some
k in the r ane 1 < It <3 , any % in the range assignment of the constants -0 , 1 to the auxiliary

0 < f<r-k , and any subset of k sources inputs so that output zi+1 computes the identity
(Vil,..,Vk su-ch that ili 2 . . . , I k S M-1 hr functlon x i p for o < I < m-k . The Boolean

are k vertex-dsjoint paths Joining the set of convolution of two Boolean vectors (xl, x2, ... ,x)

inputs (Vil,...PVik Iwith the set of outputs and (yly 2 ... ,y) is the vector (z2' ,...,z?)

l l givenby '" - 2 . yj •

A
T"O

Corollary 2. Any planar shifting circuit has at 1/4 - Cl'rn1(m
2

to the cost of B Thus inputs

leat Lm/2ij/162 vertices. contribute at most /L. c147 /(4.M2) to the cost

Proof. Any shifting circuit has the shifting of B , and B contains at most m
2

cIa n inputs.
property. See [23,24I. [1 A contains at least 2?-(m 2 cl R - -

2 II 1 1n
Corollary 3. Any planar circuit for computing m -2c 1/n inputs, of which at least .?/2 - c 'n
Boolean convolution has at least Lm/2J

2
/162 are inputs xij . One of the following cases must

vertices. hold.

Proof. A circuit for computing Boolean convolutionis a shifting circuit if we regard xi,...,x as the Case 1. A contains at least 3o2'5 inputs

primary inputs and zL,...,zm 1 as the outputs. 0 Let p be the number of columns of X which contain

at least 4m,/7 elements of A . Then
Corollary 4. Any planar circuit for computing the 2
product of two m bit binary integers has at least pm, (m-p)(Lm/7) > 1m /5 , and p> m/15 . Let q be

Lm/2j2/162 vertices, the number of columns of Z which contain at least

.m/9 elements of B . Then qm- (m-q)(4m/q) >
Proof. A circuit for multiplying two m-bit binary
integers is a shifting circuit. 0 m'2 - cl' n/2 , and q > m/1 - 9c1 n/(10m)

The last result of this section is an Mm Let k . minfm/15, m/l- 9c 1
4 7 /(uml3 . Choose

lower bound on the size of any planar circuit for any k columns of X , each of which contains at
multily-ing two maxr Boolean matrices. We shall least 4m/7 elements of A . Match each such c~lumi
asumu ti g tof X with a column of Z which contains at least
assume that the inlts are xi' Ylj for 1 < i,i < m

2
4i/? elements of B . For each pair of matched

and the outputs are z.. for 1 < ij :- m . The columns x., , select a set of 4ma/7+ 4 m,-m =

circuit computes Z = X.Y , where Z . (zij) , mi' rows I such that x1i is in A and z j is

X = (x.j) , and Y = (yij) . We use the following in B . Such a selection gives a set of ko/ut,3

property of circuits for multiplying Poolean matrices, elements in X 'A and a set of kn/65 elements in

called the matrix concentration property (23,21.. For Z7B which must be joined by m/t3 vertex-disjoint

2 paths, since G has the matrix concentration property.
any k in the range 1 < k < n , any set Each such path must contain a vertex of C . Thus
(xrr j 1 < r <S k] of k inputs from X , and any n, < c 1 ~n , which means either m</(5.63 C

permutation a of the integers one through n , there c , i (m /(15.6ci) < n) or
exist k vertex-disjoint paths from 1 (i.e.,

1 r < kJ to (zc(J I 1 - r < k. int3WID - < c1 (e.
rjr r r 2 (m2/(9-69c1)

2
< n).

Similarly, for any k in the range 1 < k < n, any Case 2. A contains fewer than 3m
2
/5 inputs x

Then A contains at least 2m
2
/5 - 2clin inputs

any permutation a of one through n , there exist k be the set of m/2 1vertex-disJoint paths from 1 < r < k]to Yi " Let S bthseof / columns of Z which
em(YrJr I I <contain the most elements in B .

{r (it)jr < r < kJ Subcase 2a. S contains at least 3m2/10 elements
in B . Let p be the number of columns of X which

Theorem 7. Any planar circuit G for multiplying two contain at least 4m/9 elements of A . Then

mxm Boolean matrices contains at least cm 4 vertices, pm4(m-p)m/9 > m
2
/2 - c1-I , and

for some positive constant c . p 2 m/lO - 9cln,/(5m) . Let q be the number of

Proof. This proof is somewhat involved, and we make columns of Z which contain at least
1
4m/7 elements

no attempt to maximize the constant factor. Suppose of B . Then qm. (m/2 - q~m/7 > 3m /10 , and
G contains n vertices, and that m is even. q > a/30 . A proof similar to that in Case I shows

Assign a cost of i/(4m
2
) to each input xi and that n > cm4

ij tat n> cm for some positive constant ceach input YLJ , a cost of i/(2n
2

) to each output2
Subcase 2b. S contains fewer than 3m2 /10 elements

zij , and a cost of zero to every other vertex. There in B . Then the m/2 columns of Z not in S
is a partition A, B, C of the vertices of G such contain at least m2 /5 - ci4/2 elements in B . Let
that neither A nor B has total cost exceeding 1
1/2 , no edge joins a vertex in A with a vertex q be the number of columns of Z not in S which
in B , and C contains no more than contain at least a/10 elements in B . Then
2rI (1 - 42) c Ivr vertices. This ia a qs+ (m/2 - q)(m/l0) > m/5 - cl-rn/2 , and

corollary of Theorem 1; see [14]. Without loss of q - m/6 - 5c, rn /(9m) . If 0 > q > m/6 - 5cI /(9m) ,
generality, suppose that B contains no fewer outputs then (3m2

/(lOc)) n Hence assume q > 0 . Then
than A , and that A contains no fewer inputs x 1 >n n u c e assuet Q 0 Th
than inputs yij . Then B contains at leat all columns in S must contain at least M/10

(.2 - cln)/2 outputs, which contribute at least elements in B , and 2N/3 - 5 cobimna of
£

7- 7 A 79

-F.2ODUC. j,"y -__

Z must contain at least m/10 elements in B tree of one vertex, the image of v Otherwise, apply
Let p be the number of columns of Y which Corollary 1 to find a partition A, B, C of the

vertices of G . Let v be any vertex in C (if C
contain at least m/25 elements of A . Then is empty, let v be any vertex). Embed the subgraph

2pmo+ (m-p)(m/25) > 2m /5 - 2c 1n , and of G induced by AUC-[v] in a binary tree T1 by

p > 3m/8 - 25cln/(12m) . applying the method recursively. Embed the subgraph of
G induced by B In a binary tree T2 by applying the

For any input yiJ (A and integer 1 in the method recursively. Let T consist of a root (the

range -n+l < I < n-1 , call yij , I a match if image of v) with two children, the root of
T
, and

z i (B . By the previous computations, there are the root of T2 . Note that the tree T constructed

at least 2m/3 - 5cln/(9m) + 3m/8 -25cln/(12m) -m in this way has exactly n vertices.

= m/25 - 95ci //(36.) = m/25 - cl1 n/m columns j Let h(n) be the maximum depth of a tree T of

such that y.j contains m/25 elements of A and n vertices produced by this algorithm. Then

Z. contains m/l0 elements of B . Each such h(n) < 9 if n < 9,

column produces m 2/250 matches; thus the total

number of matches is at least m3/6250 - mcl-n/250 " if n > 9
Since there are only 2m-1 values of I , same value

of I produces at least k = m
2
/12,500 - c2,7/500 It follows that h(n) is O(log n)

matches. Since G has the matrix concentration Let G = (V,E) be an n-vertex graph to which the

property, this set of matches -,rresponds to a set of algorithm is applied, let G1 be the subgraph of G

k elements in YOA and a set of k elements in induced by AUC , and let G2 be the subgraph induced
ZflB which must be joined by k vertex-disjoint by B If s(G) [Z d (v),O(w)) I (v,w) El then
paths. Each such path must contain a vertex in C .2

Thus k <c 4l7, which means s(G) = 0 if n = 1 , and

4 - 1 2 s (G) s(< +(+I~~)i 1.Ti
m /(12,500(c 1 + c2 /500)) < n . s(Gl) + s(G2 * k IC hn) if n >1 . This

follows from the fact that any edge of G not in G1

In all cases n > cm for some positive constant or G, must be incident to a vertex of C .
c . Choosing the minimum c over all cases gives the if s(n) is the maximum value of s(G) for any
theorem for even m . The theorem for odd m follows n-vertex graph G , then
immediately. -r_,

The bounds in Theorems 5 -7 and Corollaries 2- 1 s(l) = 0

are tight to within a constant factor. We leave the s(n) < max(s(i) s(n-i)- ck'n/ log n
proof of this fact as an exercise.

0/! - 2 F2,< I < 2n/3 2 1

6. Embedding of Data Strctures. if n > I , for some positive constant c.

Let G1 = (VI,EI) and G2 - (V2 ,E2) be An inductive proof shows that s(n) is 0(kn) .

undirected graphs. An embedding of GI in G2 is a If G is a connected n-vertex graph embedded by

one-to-one map 0: V1 - V2 . The worst-case proximity the algorithm, then G contains at least n-1 edges,
and the average proximity is 0(k) . If G is not

of the embedding is max{d 2 (0(v),0(w)) I(v,w Ell , connected, embedding each connected component

where d2(x,y) denotes the distance between x and separately and combining the resulting trees

y in G2 . The average proximity of the embedding is arbitrarily achieves an O(k) average proximity. 0

-1 E [d ((v),O(w)) I iv,w] c Ell . These notions It is natural to ask whether any graph of bounded
IEI- degree can be embedded in a binary tree with 0(l)
arise in the following context. Suppose we wish to average proximity. (Graphs of unbounded degree cannot

represent some kind of data structure by another kind be so embedded; the star of Figure 2 requires l(log n)
of data structure, in such a way that if two records proximity.) Such is not the case, and in fact the
are logically adjacent in the first data structure, property of being embeddable in a binary tree with

their representations are close together in the second. 0(1) average proximity is closely related to the
We can model the data structures by undirected graphs, property of having a good separator.
with vertices denoting records and edges denoting To make this statement more precise, let S be a
logical adjacencies. The representation problem is class of graphs. The class S has an f(n) -separator
then a graph embedding problem in which we wish to theorem if there exist constants a < 1 , 1 > 0 such
minimize worst-case or average proximity. See that the vertices of any n-vertex graph in S can be
15,13,19] for research in this area. partitioned into three sets A, B, C such that

IAI, IBI < an , Icl < af(n) , and no vertex in A is
Theorem 8. Any planar graph with maximum degree k adjacent-to any vertex-in B
can be embedded in a binary tree so that the average Let S be any class of graphs of bounded degree
proximity is a constant depending only upon k . closed under the subgraph relation (i.e., if G24 S

Proof. Let 0 be an n-vertex planar graph. Embed G and G1 is a gubgraph of G2 , then G1 c S). Suppose
in a binary tree T by using the following recursive S 2
procedure. If 0 has one vertex v , lot T be the s satisfies an ng(n)/(log n) separator theorem for

.L-. i- 2 D80

some non-decreasing function g(n) . Using the idea Merge pairs of adjacent triangles which are not
in the proof of Theorem 8, It is not hard to show that in CO to form a polygon partitlon P. . PO
any graph in S can be embedded in a binary tree with contains at most O(n2/3) line segments, since each
O(g(n)) average proximity. Conversely, suppose any such line segment must be a bounding segment of a
grbaph in a class S can be embedded in a binary tree triangle in T . Find a triangulation T of
with O(g(n)) average proximity. Then S satisfies n2/3 0 0
an ng(n)/log n separator theorem. In particular, if with 0(n/) triangles, which exists by LIema 1.
S satisfies no o(n) -separator theorem, then Using the given algorithm, determine which triangle or
embedding the graphs of S in binary trees requires line segment of To contains v
n(log n) average proximity. Erdbs, Graham, and
Szemer4di [7] have shown the existence of a class of If v is in some triangle of CO , the problem

graphs of bounded degree having no o(n) -separator is solved. Otherwise, v is known to be in some
theorem, connected set Ci of triangles in T minus CO

Merge pairs of adjacent triangles which are not in Ci

7. The Post Office Problem. to form a polygon partition P, . Since Pi contains

in [111, Kniuth mentions the following problem: at most 0(n
2 / 3) line segments, there is a triangula-

given n points (post offices) in the plane; tion Ti of Pi with O(n2/3) triangles. Using the
determine, for any new point (house), which post
office it is nearest. Any preprocessing of the post given algoritbm, determine which triangle or line

offices is allowed before the houses are processed. segment of Ti contains v . This solves the problem.

Shamos [221 gives an O(log n) -time, O(n
2
) -space The sets Ci ' polygon partitions P, I and

algorithm and an O((l2og n) 2) -time, O(n log n) triangulations Ti are all precauted. Thus the

-space algorithm. See also [6]. Using Theorem 2 time required by the algorithm is 0(log n
2 / 3

) to
we can give a solution which requires O(log n) time discover which triangle of To contains v , plus
and 0(n) spacep both minimum if only binary 2/t
decisions are allowed. O(log n

2 / 3) to discover which triangle of TI

A polygon is a connected, open planar region contains v . The total time is thus O(log n) , The
bounded by a finite set of line segments. (For total space is O(ITil) < o +20/(n
convenience, we allow the point at infinity to be an i -
endpoint of a line segment; thus a line is a line
segment.) A polygon partition of the plane is a Corollary 5. For any E > 0 there is an O(log n)
partition of the plane into polygons and bounding line -time, O(n1 + e)

-space algorithm for the triangle
segments. A triangulation of the plane is a polygon problem.
partition, all of whose polygons are bounded by three
line segments. A triangulation of a 9lygonpartiio Proof. Immediate from Theorem 9 using the (log n)
is a refinement of the partition into a triangulation. r 2
Two polygons in a polygon partition are adjacent if -time, O(n 2) -space algorithm of [22] as a starting
their boundaries share a line segment. A set of point. M
polygons is connected if any two polygons in the set
are joined by a sequence of adjacent polygons. Theorem 10. There is an O(log n) -time, 0(n) -space

We shall solve the following triangle problem: solution to the triangle problem.

given an n-triangle triangulation and a point,determine which triangle or line segment of the Proof. Let T be a triangulation and v a vertex
dtrine wich triainglte oint.e st offe for which the triangle problem is to be solved. If T
triangulation contains the point. The post office contains no more than n triangles, where n0 is a
problem can be reformulated as triangle problem; the
set of points closest to each post office forms a sufficiently large constant, determine which triangle
polygon (221. We shall make use of the following contains v by testing v against each line segment
lemm, which we do not prove, bounding a triangle of T . Otherwise, let C be a

set of 0(n
3 / 5)

triangles whose removal from T

Lemma 1. Any n-polygon partition has a refinement t o4/5
wh-seaotal number of triangles is bounded by n plus leaves no connected set of more than 0(n)
the number of line segments bounding non-triangles triangles. Group the connected sets of triangles in
plus a constant (a line segment bounding two non- T minus CO into sets Ci , each containing within a
triangles counts twice in this bound). constant factor of n

4 / 5
triangles.

We shall build up a sequence of more and more Merge pairs of adjacent triangles which are not
complicated (but more and more efficient) algorithms, in CO to form a polygon partition P0 " P0the last of which is the desired one. contains at most O(o3 / 5)

line segments. Find a

Theorem 9. Given an 0(log n) -time, O(n
I +

e
) -space triangulation T of PO with O(n3 / 5)

triangles.
algorithm for the triangle problem with c > 0 , one Usng an O(log n) -time, (n

7 / 6)
-pace algorithm,

can construct an O(log n) -time, -space determine which triangle of TO contains v .
algorithm. If v is some triangle of CO) the problem Is

Proof. Let T be a triangulation and v be a solved. Otherwise v is known to be in soe set C .

vertex for which the triangle problem is to be solved. Merge pairs of adjacent triangles which are not in
By Theorem 2 there is a set of 0(n

2 / 3)
triangles CO Mrepiso daettinlswihaenti

E• Teoem2thre. 2/)to form a polygon partition P1 " Each line segent
V1. ~~~~~whose removal from T leaves no connected set of more tofraplynpriinPI*Echiesgmt

whos r(n2/) franglees nbounding a non-triangular polygon of PI must bound a

than O(n2/3) triangles, triangle of CO . Thus there is a tria uln*Lon Ti

- '.. ~81

of F, containing 1C1I + O(n3/5) triangles. Apply References.

the algorithm recursively to discover which triangle [1] A. V. Aho, J. E. Hoproft, and J. D. Ullman,
of Ti contains v . This solves the problem. The Design and Analysis of Efficient Co uter

The sets Ci , polygon partitions Pi, and Algorithms Addison-Wesley, Reading, Mass., 19714.

triangulations Ti are all precomputed. If t(n) [2] U. Bertele and F. Brioschi, Nonserial amicProgramming, Academic Press, NewY ri972.

Is the worst-case time required by the algorithm on an

-.triangle triangulation, then (3] A. K. Chandra and L. J. Stockeyer, "Alternation,"
Proc. Seventeenth Annual Sym. on Foundations of

t(n) - 0(l) if n < no Computer Science (1976), 98-08.

t(n) 4/5otherwise. [4] S. A. Cook, "An observation on time-storage
.t((n)) + O(log n) trade-off," Proc. Fifth Annual ACM Symp. on

Theory of Computing (1973), 29-33.

An inductive proof shows that t(n) is O(log n) if ry A f omi ng S. , and33.
r.is chosen sufficiently large. (5) R. A. DeMillo, S. C. Eisenstat, and R. J. Lipton,

"Preserving average proximity in arrays," School

if s(n) is the worst-case storage space of Information and Computer Science, Georgia
required by the algorithm on an n-triangle triangula- Institute of Technology (1976).
tion, then [6) D. Dobkin and R. J. Lipton, "Multidimensional

searcing problems," SIAM J. Camput. 5 (1976),
s(t) 0(i) if n _181-186.

s(n) < O(n7/lO) +max[F s(ni +O(n3/ 5
)) i ni - n [7] P. Erd6s, R. L. Graham, and E. Szemer~di, "On

cln4/5 sparse graphs with dense long paths,"
and n n < STAN-CS-75-504, Computer Science Dep* Stanford

lfiversity (1975).
for some positive constants cI and c 2 [8] J. A. George, "Nested dissection of a regular

finite element mesh," SIAM J. Numer. Anal. 10
An inductive proof shows that s(n) is 0(n) . [](1973), 345-363.

The preprocessing time required by the algorithm [9] L. Goldschlager, "The monotone and planar circuit

of Theorer 10 is O(n log n) . See [22]. We do not value problems are log space complete for F,"
dvccete this algorithm as a practical one, but its ACM SIGACT News 9, 2 (1977), 25-29.

existence suggests that there may be a practical [10] J. Hopcroft, W. Paul, and L. Valiant, "On time
algorithm with an O(log n) time bound and O(n) versus space," Journal ACM 24 (1977), 332-337.
space bound. [11] D. E. Knuth, The Art of Computer Programming,

Volume 3: Sorting and Searching, Addison-Wesley,

. ther Applications. Reading, Mass., 1973.

[12] D. Kozen, "On parallelism in Turing machines,"
As illustrated in this paper, Theorem 1 and its Proc. Seventeenth Annual SmL. on Foundations of

ccrollaries have many interesting applications, and Computer Science (1976), 89-7.
the paper does not exhaust them, We have obtained two
additional results which require fuller discussion [13] R. J. Lipton, S. C. Eisenstat, and R. A. DeMillo,
than is possible here. One is the application of "Space and time hierarchies for control
Theorem I to Gaussian elimination. George [8] has structures and data structures," Journal ACM 23

;rn;-'ced an O(n log n) -space, O(n3/2) -time method (1976), 720-732.

of carrying out Gaussian elimination on a system of 114] R. J. Lipton and R. E. TarJan, "A separator
e eations whose sparsity structure corresponds to a theorem for planar graphs," to appear.

' xn v/ square grid. We can generalize his method so [15] H. C. Martin and G. F. Carey, Introduction to
that it applies to any system of equations whose Finite Element Analysis, McGraw-Hill, New York,
sparsity structure corresponds to a planar or almost- 1973.
planar graph. Such systems arise in the solution oftwo-dimensional finite-element problems [15]. We [16] M. S. Paterson and C. E. Hewitt, "Comparative

two-imenionl fiiteelemnt poblms [5].schematolo r," Record of Project MAC Conf. on

.hall discuss this application in a subsequent paper; Concurrent Systems and Parallel Comutation
we ho'e that it will prove of practical, as well as (1nu0), 2 at

theoretical, value. (1970)p 119_

Another application involves the power of non- [17] M. S. Paterson, "Tape bounds for time-bounded
Anoherappicaioninvlve th poer f nn-Turn machines," Jora C1omputer and System

Ie'errInism in one-tape Turing machines. We can prove Scienc 6B(1972, alot a2t
tnat any non-deterministic t(n) -time-bounded one- Sciences 6 (1972) ll6-1 4

a;, Turing machine can be simulated by a t(n)" [18] W. J. Paul, R. E. Tarjan, and J. R. C loni,
alternating one-tape Turing machine with a constant "Space bounds for a game on graphs," Math.
- nir 'f alternations, where 7 < 1 is a suitable Systems Theory 10 (1977), 239-251.
"r*s'ant and t(n) satisfies certain reasonable [19] A. L. Rosenberg, "Managing storage for extendible
-'%ri-Im s. Alternation generalizes the concept of arrays," SIAM J. Comput. 4 (1975), 287-306.

Wo unim *,e, a., nd Is discussed in 13,12). Our, O.'ran4 hens Paterson's space-efficient [20] A. Rosenthal, "Nonserial dynamic programing is
.r. e f one-tape Turing machines 17. optimal," Proc. Ninth Annual ACM Symp. on Theory

of Computing (1977), 98-105.

121] R. Sethi, "Complete register allocation problems,'
SIAM J. Comput. 4 (1975), 226-248.

82

[22] M. J. Samos, "Geometric complexity," Proc.
Seventh Annual ACM Symp. on Theory of Computing
(1975), 22 -233.

[23] L. G. Valiant, "On non-linear lower bounds in
computational complexity," Proc. Seventh Annual
ACM SyM. on Theory of Computing (1975), 25-53.

[24] L. G. Valiant, "Graph-theoretic arguments in
low-level complexity," Computer Science Dept.,
University of Edinburgh (1977).

Figure 1. Elimination of a crossover by use of three "exclusive or" gates.

Reference [9] contains a crossover circuit which uses only "and"

and "not".

Figure 2. A star.

£

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM
,_.IJPONT NUMBER 12

. 3OVT ACCESSION NO. 3. RECIPIENT'S CATALOG WUNDER

IT- ICS- 79/12
TITLE dSubtle*) S. TYPE OF REPORT G PERIOD COVERED

~~~Final W .. ,

Combinatorial Graph Embedding # -__

7. AUTHOR) a.NTRACT OR GRANT 4UMBER(a)

R.A.DeMillo .CEisensta R.J/ Lipton 1
t7G29-7f -338

. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PROJECT. TASK
Georgia Institute of TechnologySS 10. PROR E NT.N.RJEC S

School of Information and Computer Science
Atlanta, Georgia 30332

11. CONTROLLING OFFICE NAME AND ADDRESS REPCRT DATE-

U. Armny Pesearch nffic-e /a

Researchi Triangle I'ark, .:C 27709 1-- r82'
14 MONITORING AGENCY NAME & ADDRESS(If different from Controllng Office) IS. SECURITY CLASS. (of this report)

iUnc lansi lied

9~ 41).0 ISDECLASIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBJTION STATEMENT (of thie Report)

Approved "-,,r public re'ease; distributi n unlimited.

17 DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

I0 SUPPLEMENT ARY NOTES

The ".i-, pinisr:, a: , r findirgs cntaine in this report are those of the
autkvr, ;j arii . - t be construed as r nfficial Department of the Army
p .;i i 'r, p-li-y, r .i. sion, uness s( ,-i 'nated by other documentatin.

19 KEY CORDS (Conrnue on reverie aide of necesery and Identify by block number)

n

ABSTRACT (Continue on rverei aide It neceseery Id Identity by block number)

Let G, G' be directed/raphs. A combinatorial embedding of G into G' is an iden-
tification of each x,. V(G) with a set of vertices S,V(G') such that each S is
bounded in size by a constant independent of (V(G)) and each arc in G is carried
into a directed path of length bounded by a constant independent of 4V(G)). This
concept (f-st_.defined i-[A]T"has formed the basis for a number of theoretical
studies supported by .AR0 Coantraclto. DM2._f_-G-Q33& and the papers collected
here are representative of - with one major exception - the state-of-the-art with
regard to graph embedding.,,,,;

DD Rh1473 EDITION .OF1 NOV GS LE 0 E rlalssifiediiL c~ -
cD , ri t icir eT r i t. P14nP rwhi.o oF, fl .nPeef


